Acidic Organic Compounds in Beverage, Food, and Feed Production

  • Hendrich Quitmann
  • Rong Fan
  • Peter Czermak
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 143)


Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as “natural,” whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

Graphical Abstract


Acidifier Acidulant Animal feed Beverage Biotechnological production Food Food acid Food additive Lactic acid production Membrane bioreactor Organic acid 


  1. 1.
    Association of American Feed Control Officials (2008) Pet food and specialty pet food labeling guideGoogle Scholar
  2. 2.
    Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi: 10.1093/nar/gkr988 Google Scholar
  3. 3.
    He H, Wang H, Fang C, Wu H, Guo X, Liu C, Lin Z, Lin W (2012) Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J Plant Physiol 169:1747–1753. doi: 10.1016/j.jplph.2012.06.018 Google Scholar
  4. 4.
    Thakur BR, Singh RK, Handa AK, Rao MA (1997) Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr 37:47–73Google Scholar
  5. 5.
    Ames WM (1952) The conversion of collagen to gelatin and their molecular structures. J Sci Food Agric 3:454–463. doi: 10.1002/jsfa.2740031004 Google Scholar
  6. 6.
    Wienen WJ, Shallenberger RS (1988) Influence of acid and temperature on the rate of inversion of sucrose. Food Chem 29:51–55. doi: 10.1016/0308-8146(88)90075-1 Google Scholar
  7. 7.
    Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A (2006) New perspectives for citric acid production and application. Food Technol Biotechnol 44:141Google Scholar
  8. 8.
    Buck DF (1991) Antioxidants. In: Smith J (ed) Food additive user’s handbook. Springer, New York, p 1–46Google Scholar
  9. 9.
    Pokorny J, Yanishlieva N, Gordon M (2001) Antioxidants in food. CRC press, FloridaGoogle Scholar
  10. 10.
    Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885. doi: 10.1021/jf00035a014 Google Scholar
  11. 11.
    Yen GC, Duh PD, Tsai HL (2002) Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem 79:307–313. doi: 10.1016/S0308-8146(02)00145-0 Google Scholar
  12. 12.
    Graf E (1992) Antioxidant potential of ferulic acid. Free Radical Biol Med 13:435–448. doi: 10.1016/0891-5849(92)90184-I Google Scholar
  13. 13.
    Biebaut D (1991) Flour improvers and raising agents. In: Smith J (ed) Food additive user’s handbook. Springer, New York, p 242–256Google Scholar
  14. 14.
    Grosch W, Wieser H (1999) Redox reactions in wheat dough as affected by ascorbic acid. J Cereal Sci 29:1–16. doi: 10.1006/jcrs.1998.0218 Google Scholar
  15. 15.
    Wehrle K, Grau H, Arendt EK (1997) Effects of lactic acid, acetic acid, and table salt on fundamental rheological properties of wheat dough. Cereal Chem J 74:739–744. doi: 10.1094/cchem.1997.74.6.739 Google Scholar
  16. 16.
    Nakamura M, Kurata T (1997) Effect of l-ascorbic acid on the rheological properties of wheat flour-water dough. Cereal Chem J 74:647–650. doi: 10.1094/cchem.1997.74.5.647 Google Scholar
  17. 17.
    McGraw-Hill PSP (2002) McGraw-Hill dictionary of scientific and technical terms. The McGraw-Hill Companies Inc, New YorkGoogle Scholar
  18. 18.
    Codex Alimentarius Commission (1989) Class names and the international numbering system for food additives. CAC/GL (36-1989)Google Scholar
  19. 19.
    Smith J, Hong-Shum L (2011) Food additives data book. Wiley, OxfordGoogle Scholar
  20. 20.
    Gordon RJ (1991) Flavourings. In: Smith J (ed) Food additive user’s handbook. Springer, New York, p 75–88Google Scholar
  21. 21.
    Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9. doi: 10.1016/S0304-4165(01)00235-5 Google Scholar
  22. 22.
    Roig MG, Rivera ZS, Kennedy JF (1993) L-ascorbic acid: an overview. Int J Food Sci Nutr 44:59–72. doi: 10.3109/09637489309017424 Google Scholar
  23. 23.
    Alonso S, Rendueles M, Díaz M (2013) Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv. doi: 10.1016/j.biotechadv.2013.04.010 Google Scholar
  24. 24.
    Gutiérrez LF, Hamoudi S, Belkacemi K (2012) Lactobionic acid: a high value-added lactose derivative for food and pharmaceutical applications. Int Dairy J 26:103–111. doi: 10.1016/j.idairyj.2012.05.003 Google Scholar
  25. 25.
    Schaafsma G (2008) Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int Dairy J 18:458–465. doi: 10.1016/j.idairyj.2007.11.013 Google Scholar
  26. 26.
    Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269. doi: 10.1002/jsfa.1873 Google Scholar
  27. 27.
    Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172Google Scholar
  28. 28.
    Sloan AE, Labuza TP (1976) Prediction of water activity lowering ability of food humectants at high aw. J Food Sci 41:532–535. doi: 10.1111/j.1365-2621.1976.tb00664.x Google Scholar
  29. 29.
    Lück E, Jager M (1997) Antimicrobial action of preservatives. In: Antimicrobial food additives. Springer, Berlin, p 36–57Google Scholar
  30. 30.
    Leavening agent (2013) Encyclopædia britannica online. Accessed 24 Jun 2013
  31. 31.
    Nitin K (2008) Longman Science Chemistry 10. Pearson Education. Delhi, IndiaGoogle Scholar
  32. 32.
    Bender DA (2009) A dictionary of food and nutrition. Oxford University Press, OxfordGoogle Scholar
  33. 33.
    Giménez B, Turnay J, Lizarbe MA, Montero P, Gómez-Guillén MC (2005) Use of lactic acid for extraction of fish skin gelatin. Food Hydrocolloids 19:941–950. doi: 10.1016/j.foodhyd.2004.09.011 Google Scholar
  34. 34.
    Nauta T (1991) Chelating agents. In: Smith J (ed) Food additive user’s handbook. Springer, Oxford, p 273–279Google Scholar
  35. 35.
    Phadungath (2005) The mechanism and properties of acid-coagulated milk gels. Songklanakarin. J Sci Technol 27:433–448Google Scholar
  36. 36.
    Revis C, Payne GA (1907) The acid coagulation of milk. J Hyg 7:216–231Google Scholar
  37. 37.
    Guyomarc’h F, Renan M, Chatriot M, Gamerre V, Famelart MH (2007) Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/κ-casein aggregates. J Agric Food Chem 55:10986–10993. doi: 10.1021/jf0722304 Google Scholar
  38. 38.
    Donato L, Alexander M, Dalgleish DG (2007) Acid gelation in heated and unheated milks: interactions between serum protein complexes and the surfaces of casein micelles. J Agric Food Chem 55:4160–4168. doi: 10.1021/jf063242c Google Scholar
  39. 39.
    Sahul JK, Das H (2010) A continuous heat-acid coagulation unit for continuous production of chhana. Assam Univ J Sci Technol 4:40–45Google Scholar
  40. 40.
    Liu Z, Chang SK (2004) Effect of soy milk characteristics and cooking conditions on coagulant requirements for making filled tofu. J Agric Food Chem 52:3405–3411. doi: 10.1021/jf035139i Google Scholar
  41. 41.
    Puppo MC, Añón MC (1998) Effect of pH and protein concentration on rheological behavior of acidic soybean protein gels. J Agric Food Chem 46:3039–3046. doi: 10.1021/jf971092n Google Scholar
  42. 42.
    Theron MM, Lues JFR (2010) Application of organic acids in food preservation. In: Organic acids and food preservation, CRC PressI Llc, p 51–95, Bosa Roca, USAGoogle Scholar
  43. 43.
    Lückstädt C (2008) The use of acidifiers in fish nutrition. CAB Rev 3:1–8Google Scholar
  44. 44.
    Sauli I, Danuser J, Geeraerd AH, Van Impe JF, Rüfenacht J, Bissig-Choisat B, Wenk C, Stärk KDC (2005) Estimating the probability and level of contamination with Salmonella of feed for finishing pigs produced in Switzerland—the impact of the production pathway. Int J Food Microbiol 100:289–310. doi: 10.1016/j.ijfoodmicro.2004.10.026 Google Scholar
  45. 45.
    Freitag M (2007) Organic acids and salts promote performance and health in animal husbandry. In: Lückstädt C (ed) Acidifiers in animal nutrition: a guide for feed preservation and acidification to promote animal performance. p 1–11, Packington, GBGoogle Scholar
  46. 46.
    Papatsiros VG, Cristodoulopoulos C, Filippopoulos LC (2012) The use of organic acids in monogastric animals (swine and rabbits). J Cell Anim Biol 6:154–159Google Scholar
  47. 47.
    Suryanarayana MVAN, Suresh J, Rajasekhar MV (2012) Organic acids in swine feeding—a review. Agric Sci Res J 2:523–533Google Scholar
  48. 48.
    Tung CM, Pettigrew JE (2008) Critical review of acidifiers. Report NPB:05-169Google Scholar
  49. 49.
    Kim YY, Kil DY, Oh HK, Han IK (2005) Acidifier as an alternative material to antibiotics in animal feed. Asian-Australas J Anim Sci 18:1048Google Scholar
  50. 50.
    Desai DN, Patwardhan DS, Ranade AS, Lückstädt C (2007) Acidifiers in poultry diets and poultry production. In: Lückstädt C (ed) Acidifiers in animal nutrition: a guide for feed preservation and acidification to promote animal performance. Nottingham University Press, Nottingham, pp 63–69Google Scholar
  51. 51.
    Haque MN, Chowdhury R, Islam KMS, Akbar MA (2009) Propionic acid is an alternative to antibiotics in poultry diet. Bangladesh J Anim Sci 38:115–122Google Scholar
  52. 52.
    Menconi A, Reginatto AR, Londero A, Pumford NR, Morgan M, Hargis BM, Tellez G (2013) Effect of organic acids on salmonella typhimurium infection in broiler chickens. Int J Poult Sci 12:72–75Google Scholar
  53. 53.
    Rosyidah MR, Loh TC, Foo HL, Cheng XF, Bejo MH (2011) Effect of feeding metabolites and acidifier on growth performance, faecal characteristics and microflora in broiler chickens. J Anim Vet Adv 10:2758–2764. doi: 10.3923/javaa.2011 2758.2764Google Scholar
  54. 54.
    Lückstädt C, Kühlmann KJ (2011) The use of diaformates in tilapia - ways to improve performance sustainably: a short review. In: Lückstädt C (ed) Standards for acidifiers. Nottingham, GBGoogle Scholar
  55. 55.
    Ganguly S, Dora KC, Sarkar S, Chowdhury S (2013) Supplementation of prebiotics in fish feed: a review. Rev in Fish Biol and Fisheries 23:195–199. doi: 10.1007/s11160-012-9291-5 Google Scholar
  56. 56.
    Mine S, Boopathy R (2011) Effect of organic acids on shrimp pathogen, vibrio harveyi. Curr Microbiol 63:1–7. doi: 10.1007/s00284-011-9932-2 Google Scholar
  57. 57.
    Ajiboye OO, Yakubu AF, Adams TE (2012) A perspective on the ingestion and nutritional effects of feed additives in farmed fish species. World J Fish Mar Sci 4:87–101. doi: 10.5829/idosi.wjfms.2012.04.01.56264 Google Scholar
  58. 58.
    Papatsiros VG, Christodoulopoulos G (2011) The use of organic acids in rabbit farming. Online J Anim Feed Res 1:434–438Google Scholar
  59. 59.
    Falcão-e-Cunha L, Castro-Solla L, Maertens L, Marounek M, Pinheiro V, Freire J (2010) Alternatives to antibiotic growth promoters in rabbit feeding: a review. World Rabbit Sci 15:127–140Google Scholar
  60. 60.
    Ribeiro MD, Pereira JC, Queiroz AC, Cecon PR, Detmann E, Azevêdo JAG (2009) Performance of dairy calves fed milk, milk replacer or post-weaning concentrate with acidifiers. Rev Bras Zootec 38:956–963Google Scholar
  61. 61. (2013) Accessed 18 Sept 2013
  62. 62.
    Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108. doi: 10.1016/j.tibtech.2007.11.006 Google Scholar
  63. 63.
    Burdock GA (2004) In: Fenaroli’s handbook of flavor ingredients. CRC press, Boca RatonGoogle Scholar
  64. 64.
    IHS chemical (2013) Formic acidGoogle Scholar
  65. 65.
    Xu Z, Shi Z, Jiang L (2011) 3.18 - Acetic and Propionic Acids. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 189–199Google Scholar
  66. 66.
    Lück E, Jager M, Raczek N (2000) Sorbic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  67. 67.
    Sengun IY, Karabiyikli S (2011) Importance of acetic acid bacteria in food industry. Food Control 22:647–656. doi:
  68. 68.
    Kocher GS, Dhillon HK (2013) Fermentative production of sugarcane vinegar by immobilized cells of acetobacter aceti under packed bed conditions. Sugar Tech 15:71–76. doi: 10.1007/s12355-012-0179-4 Google Scholar
  69. 69.
    Jiménez-Hornero JE, Santos-Dueñas IM, García-García I (2009) Optimization of biotechnological processes. The acetic acid fermentation. Part I: the proposed model. Biochem Eng J 45:1–6. doi: 10.1016/j.bej.2009.01.009 Google Scholar
  70. 70.
    Awad HM, Malek RA, Othman NZ, Aziz RA, El Enshasy HA (2012) Efficient production process for food grade acetic acid by acetobacter aceti in shake flask and in bioreactor cultures. E-J Chem 9:2275–2286. doi: 10.1155/2012/965432 Google Scholar
  71. 71.
    Wang Z, Yan M, Chen X, Li D, Qin L, Li Z, Yao J, Liang X (2013) Mixed culture of saccharomyces cerevisiae and acetobacter pasteurianus for acetic acid production. Biochem Eng J 79:41–45. doi: 10.1016/j.bej.2013.06.019 Google Scholar
  72. 72.
    Matsutani M, Nishikura M, Saichana N, Hatano T, Masud-Tippayasak U, Theergool G, Yakushi T, Matsushita K (2013) Adaptive mutation of acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. J Biotechnol 165:109–119. doi: 10.1016/j.jbiotec.2013.03.006 Google Scholar
  73. 73.
    Reutemann W, Kieczka H (2000) Formic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  74. 74.
    Eguchi SY, Nishio N, Nagai S (1985) Formic acid production from H2 and bicarbonate by a formateutilizing methanogen. Appl Microbiol Biotechnol 22:148–151. doi: 10.1007/bf00250036 Google Scholar
  75. 75.
    Shams Yazdani S, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351. doi: 10.1016/j.ymben.2008.08.005 Google Scholar
  76. 76.
    Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135. doi: 10.1128/AEM.02192-07 Google Scholar
  77. 77.
    Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J (2012) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 32:374–381. doi: 10.3109/07388551.2011.651428 Google Scholar
  78. 78.
    Zhu Y, Li J, Tan M, Liu L, Jiang L, Sun J, Lee P, Du G, Chen J (2010) Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresour Technol 101:8902–8906. doi: 10.1016/j.biortech.2010.06.070 Google Scholar
  79. 79.
    Jin Z, Yang S (1998) Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici. Biotechnol Prog 14:457–465. doi: 10.1021/bp980026i Google Scholar
  80. 80.
    Kagliwal LD, Survase SA, Singhal RS, Granström T (2013) Wheat flour based propionic acid fermentation: an economic approach. Bioresour Technol 129:694–699. doi: 10.1016/j.biortech.2012.12.154 Google Scholar
  81. 81.
    Wang Z, Yang ST (2013) Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresour Technol 137:116–123. doi: 10.1016/j.biortech.2013.03.012 Google Scholar
  82. 82.
    Zhang A, Yang S (2009) Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem 44:1346–1351. doi: 10.1016/j.procbio.2009.07.013 Google Scholar
  83. 83.
    Suwannakham S, Huang Y, Yang S (2006) Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol Bioeng 94:383–395. doi: 10.1002/bit.20866 Google Scholar
  84. 84.
    Zhang A, Yang S (2009) Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 104:766–773. doi: 10.1002/bit.22437 Google Scholar
  85. 85.
    Claypool JT, Raman DR (2012) A coarse techno-economic model of a combined fermentation-catalysis route to sorbic acid. In: Agricultural and biosystems engineering presentations, posters and proceedings, DallasGoogle Scholar
  86. 86.
    Xie D, Shao Z, Achkar J, Zha W, Frost JW, Zhao H (2006) Microbial synthesis of triacetic acid lactone. Biotechnol Bioeng 93:727–736. doi: 10.1002/bit.20759 Google Scholar
  87. 87.
    Tang S, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135:10099–10103. doi: 10.1021/ja402654z Google Scholar
  88. 88.
    Polen T, Spelberg M, Bott M (2013) Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol. doi: 10.1016/j.jbiotec.2012.07.008 Google Scholar
  89. 89.
    Merchant Research and Consulting LTD (2013) Adipic Acid (ADPA): 2013 World market outlook and forecast up to 2017Google Scholar
  90. 90.
    Yang ST, Zhang K, Zhang B, Huang H (2011) 3.16 - Fumaric acid. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive Biotechnology, 2nd edn. Academic Press, Burlington, p 163–177Google Scholar
  91. 91.
    Roa Engel CA, van Gulik WM, Marang L, van der Wielen LAM, Straathof AJJ (2011) Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme Microb Technol 48:39–47. doi: 10.1016/j.enzmictec.2010.09.001 Google Scholar
  92. 92.
    Cukalovic A, Stevens CV (2008) Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology. Biofuels, Bioprod Biorefin 2:505–529. doi: 10.1002/bbb.105 Google Scholar
  93. 93.
    Musser MT (2000) Adipic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  94. 94.
    van Duuren JBJH, Wijte D, Karge B, Martins dos Santos VAP, Yang Y, Mars AE, Eggink G (2012) pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog 28:85–92. doi: 10.1002/btpr.709 Google Scholar
  95. 95.
    Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201–211. doi: 10.1021/bp010179x Google Scholar
  96. 96.
    Moon TS, Yoon SH, Lanza AM, Roy-Mayhew JD, Prather KL (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75:589–595. doi: 10.1128/AEM.00973-08 Google Scholar
  97. 97.
    Moon TS, Dueber JE, Shiue E, Prather KLJ (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305. doi: 10.1016/j.ymben.2010.01.003 Google Scholar
  98. 98.
    Lippow SM, Moon TS, Basu S, Yoon S, Li X, Chapman BA, Robison K, Lipovšek D, Prather KLJ (2010) Engineering enzyme specificity using computational design of a defined-sequence library. Chem Biol 17:1306–1315. doi: 10.1016/j.chembiol.2010.10.012 Google Scholar
  99. 99.
    Thomas JM, Raja R, Johnson BFG, O’Connell TJ, Sankar G, Khimyak T (2003) Bimetallic nanocatalysts for the conversion of muconic acid to adipic acid. Chem Commun 10:1126–1127. doi: 10.1039/b300203a Google Scholar
  100. 100.
    Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic Engineering of Candida Tropicalis for the Production of Long-Chain Dicarboxylic Acids. Nat Biotechnol 10:894–898Google Scholar
  101. 101.
    Hara A, Ueda M, Matsui T, Arie M, Saeki H, Matsuda H, Furuhashi K, Kanai T, Tanaka A (2001) Repression of fatty-acyl-CoA oxidase-encoding gene expression is not necessarily a determinant of high-level production of dicarboxylic acids in industrial dicarboxylic-acid-producing Candida tropicalis. Appl Microbiol Biotechnol 56:478–485. doi: 10.1007/s002530000543 Google Scholar
  102. 102.
    Xu Q, Li S, Huang H, Wen J (2012) Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv 30:1685–1696. doi: 10.1016/j.biotechadv.2012.08.007 Google Scholar
  103. 103.
    Song CW, Kim DI, Choi S, Jang JW, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110:2025–2034. doi: 10.1002/bit.24868 Google Scholar
  104. 104.
    Nakajima-Kambe T, Nozue T, Mukouyama M, Nakahara T (1997) Bioconversion of maleic acid to fumaric acid by Pseudomonas alcaligenes strain XD-1. J Ferment Bioeng 84:165–168. doi: 10.1016/S0922-338X(97)82549-4 Google Scholar
  105. 105.
    Ichikawa S, Iino T, Sato S, Nakahara T, Mukataka S (2003) Improvement of production rate and yield of fumaric acid from maleic acid by heat treatment of Pseudomonas alcaligenes strain XD-1. Biochem Eng J 13:7–13. doi: 10.1016/S1369-703X(02)00080-3 Google Scholar
  106. 106.
    Lee JW, Han MS, Choi S, Yi J, Lee TW, Lee SY (2011) 3.15 - Organic acids: succinic and malic acids. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 149–161Google Scholar
  107. 107.
    Meynial-Salles I, Dorotyn S, Soucaille P (2008) A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol Bioeng 99:129–135. doi: 10.1002/bit.21521 Google Scholar
  108. 108.
    Cheng K, Wang G, Zeng J, Zhang J (2013) Improved succinate production by metabolic engineering. BioMed Res Int 2013:12. doi: 10.1155/2013/538790 Google Scholar
  109. 109.
    Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol. doi: 10.1016/j.copbio.2013.03.008
  110. 110.
    Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464. doi: 10.1007/s00253-008-1668-y Google Scholar
  111. 111.
    Kirimura K, Honda Y, Hattori T (2011) 3.13 - Citric acid. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 135–142Google Scholar
  112. 112.
    Singh Dhillon G, Kaur Brar S, Verma M, Tyagi RD (2011) Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol 4:505–529. doi: 10.1007/s11947-010-0399-0
  113. 113.
    Global Industry Analysts (2012) Lactic acid: a global strategic business report. MCP-2089Google Scholar
  114. 114.
    Mujtaba IM, Edreder EA, Emtir M (2012) Significant thermal energy reduction in lactic acid production process. Appl Energy 89:74–80. doi: 10.1016/j.apenergy.2010.11.031 Google Scholar
  115. 115.
    Verhoff FH (2000) Citric acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  116. 116.
    Ikram-ul H, Ali S, Qadeer MA, Iqbal J (2004) Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour technol 93:125–130. doi:
  117. 117.
    Buque-Taboada EM, Straathof AJJ, Heijnen JJ, Wielen LAM (2006) In situ product recovery (ISPR) by crystallization: basic principles, design, and potential applications in whole-cell biocatalysis. Appl Microbiol Biotechnol 71:1–12. doi: 10.1007/s00253-006-0378-6 Google Scholar
  118. 118.
    Chibata I, Tosa T, Takata I (1983) Continuous production of L-malic acid by immobilized cells. Trends Biotechnol 1:9–11. doi: 10.1016/0167-7799(83)90019-7 Google Scholar
  119. 119.
    Neufeld RJ, Peleg Y, Rokem JS, Pines O, Goldberg I (1991) l-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb Technol 13:991–996. doi: 10.1016/0141-0229(91)90122-Q Google Scholar
  120. 120.
    Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777. doi: 10.1128/AEM.02591-07 Google Scholar
  121. 121.
    Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75:713–722. doi: 10.1007/s00253-007-0851-x Google Scholar
  122. 122.
    Kirimura K, Honda Y, Hattori T (2011) 3.14 - Gluconic and itaconic acids. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 143–147Google Scholar
  123. 123.
    Global Industry Analysts (2008) Tartaric acid - a global strategic business report. MCP-2151Google Scholar
  124. 124.
    Oster B, Fechtel U (2000) Vitamins, 7. Vitamin C (l-ascorbic acid). In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  125. 125.
    Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195Google Scholar
  126. 126.
    Anastassiadis S, Rehm H (2006) Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors. Appl Microbiol Biotechnol 73:541–548. doi: 10.1007/s00253-006-0499-y Google Scholar
  127. 127.
    Anastassiadis S, Rehm H (2006) Continuous gluconic acid production by Aureobasidium pullulans with and without biomass retention. Electron J Biotechnol 9. doi: 10.2225/vol9-issue5-fulltext-18
  128. 128.
    Sankpal NV, Joshi AP, Sutar II, Kulkarni BD (1999) Continuous production of gluconic acid by Aspergillus niger immobilized on a cellulosic support: study of low pH fermentative behaviour of Aspergillus niger. Process Biochem 35:317–325. doi: 10.1016/S0032-9592(99)00074-6 Google Scholar
  129. 129.
    van Hecke W, Bhagwat A, Ludwig R, Dewulf J, Haltrich D, van Langenhove H (2009) Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid. Biotechnol Bioeng 102:1475–1482. doi: 10.1002/bit.22165 Google Scholar
  130. 130.
    Murakami H, Seko A, Azumi M, Ueshima N, Yoshizumi H, Nakano H, Kitahata S (2003) Fermentative production of lactobionic acid by Burkholderia cepacia. J Appl Glycosc 50:117–120Google Scholar
  131. 131.
    Alonso S, Rendueles M, Díaz M (2013) Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol 134:134–142. doi:
  132. 132.
    Malvessi E, Carra S, Pasquali FC, Kern DB, Silveira MM, Ayub MAZ (2013) Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol 40:1–10. doi: 10.1007/s10295-012-1198-6 Google Scholar
  133. 133.
    Kassaian JM (2000) Tartaric acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  134. 134.
    Klasen R, Bringer-Meyer S, Sahm H (1992) Incapability of Gluconobacter oxydans to produce tartaric acid. Biotechnol Bioeng 40:183–186. doi: 10.1002/bit.260400126 Google Scholar
  135. 135.
    Chandrashekar K, Felse P, Panda T (1999) Optimization of temperature and initial pH and kinetic analysis of tartaric acid production by Gluconobacter suboxydans. Bioprocess Eng 20:203–207. doi: 10.1007/pl00009044 Google Scholar
  136. 136.
    Mantha D, Aslam Basha Z, Panda T (1998) Optimization of medium composition by response surface methodology for the production of tartaric acid by Gluconobacter suboxydans. Bioprocess Eng 19:285–288. doi: 10.1007/pl00009020 Google Scholar
  137. 137.
    Matzerath I, Kläui W, Klasen R, Sahm H (1995) Vanadate catalysed oxidation of 5-keto-d-gluconic acid to tartaric acid: the unexpected effect of phosphate and carbonate on rate and selectivity. Inorg Chim Acta 237:203–205. doi:
  138. 138.
    Natella F, Nardini M, Di Felice M, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J Agric Food Chem 47:1453–1459. doi: 10.1021/jf980737w Google Scholar
  139. 139.
    World Health Organization (2005) Benzoic acid and sodium benzoate. Organization WH, GenevaGoogle Scholar
  140. 140.
    Maki T, Takeda K (2000) Benzoic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  141. 141.
    Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H (2002) Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50:2161–2168. doi: 10.1021/jf011348w Google Scholar
  142. 142.
    Figueroa-Espinoza MC, Morel MH, Surget A, Asther M, Moukha S, Sigoillot JC, Rouau X (1999) Attempt to cross-link feruloylated arabinoxylans and proteins with a fungal laccase. Food Hydrocolloids 13:65–71. doi: Google Scholar
  143. 143.
    Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. doi: 10.1007/s002530100687 Google Scholar
  144. 144.
    Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol 39:708–711Google Scholar
  145. 145.
    Noda S, Kitazono E, Tanaka T, Ogino C, Kondo A (2012) Benzoic acid fermentation from starch and cellulose via a plant-like beta-oxidation pathway in Streptomyces maritimus. Microb Cell Fact 11:49Google Scholar
  146. 146.
    Taniguchi H, Hosoda A, Tsuno T, Maruta Y, Nomura E (1999) Preparation of ferulic acid and its application for the synthesis of cancer chemopreventive agents. Anticancer Res 19:3757–3761Google Scholar
  147. 147.
    Couteau D, Mathaly P (1997) Purification of ferulic acid by adsorption after enzymic release from a sugar-beet pulp extract. Ind Crops Prod 6:237–252. doi: 10.1016/S0926-6690(97)00014-9 Google Scholar
  148. 148.
    Couteau D, Mathaly P (1998) Fixed-bed purification of ferulic acid from sugar-beet pulp using activated carbon: optimization studies. Bioresour Technol 64:17–25. doi:
  149. 149.
    Madhavi DL, Smith MAL, Linas AC, Mitiku G (1997) Accumulation of ferulic acid in cell cultures of Ajuga pyramidalis metallica crispa. J Agric Food Chem 45:1506–1508. doi: 10.1021/jf9607831 Google Scholar
  150. 150.
    Kar B, Banerjee R, Bhattacharyya BC (1999) Microbial production of gallic acid by modified solid state fermentation. J Ind Microbiol Biotechnol 23:173–177. doi: 10.1038/sj.jim.2900713 Google Scholar
  151. 151.
    Banerjee D, Mahapatra S, Pati BR (2007) Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Res J Microbiol 2:462–468Google Scholar
  152. 152.
    Chávez-González M, Rodríguez-Durán L, Balagurusamy N, Prado-Barragán A, Rodríguez R, Contreras J, Aguilar C (2012) Biotechnological Advances and Challenges of Tannase: An Overview. Food Bioprocess Technol 5:445–459. doi: 10.1007/s11947-011-0608-5 Google Scholar
  153. 153.
    Gonçalves HB, Jorge JA, Pessela BC, Lorente GF, Guisán JM, Guimarães LHS (2013) Characterization of a tannase from Emericela nidulans immobilized on ionic and covalent supports for propyl gallate synthesis. Biotechnol Lett 35:591–598. doi: 10.1007/s10529-012-1111-4 Google Scholar
  154. 154.
    Gao T, Wong Y, Ng C, Ho K (2012) L-lactic acid production by Bacillus subtilis MUR1. Bioresour Technol 121:105–110. doi: 10.1016/j.biortech.2012.06.108 Google Scholar
  155. 155.
    Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83. doi: 10.1016/j.tifs.2012.11.007 Google Scholar
  156. 156.
    Miller C, Fosmer A, Rush B, McMullin T, Beacom D, Suominen P (2011) 3.17—Industrial production of lactic acid. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 179–188Google Scholar
  157. 157.
    Holten CH (1971) Lactic acid: properties and chemistry of lactic acid and derivatives. Verlag Chemie GmbH, WeinheimGoogle Scholar
  158. 158.
    U.S. Food and Drug Administration (FAO) (2012) Code of federal regulations—lactic acid. 21CFR184.1061Google Scholar
  159. 159.
    Hazards EPoB, EFSA Panel on Food Contact Materials E, Flavourings and Processing Aids (2011) Scientific opinion on the evaluation of the safety and efficacy of lactic acid for the removal of microbial surface contamination of beef carcasses, cuts and trimmings. In: Opinion of the scientific committee/scientific panel. European Food Safety Authority (EFSA), Parma, p 33Google Scholar
  160. 160.
    Scientific Committee on Food (1991) First series of food additives of various technological functions. Communities CotE, Luxembourg. CD-NA13416-EN-CGoogle Scholar
  161. 161.
    FAO (1974) Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. FAO nutrition meetings report series, p 1–520Google Scholar
  162. 162.
    Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482. doi: 10.1016/j.progpolymsci.2007.01.005 Google Scholar
  163. 163.
    Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107. doi: 10.1016/S0141-0229(99)00155-6
  164. 164.
    Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria: microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, p 1–66Google Scholar
  165. 165.
    Moon SK, Wee YJ, Choi GW (2012) A novel lactic acid bacterium for the production of high purity l-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. J Biosci Bioeng 114:155–159. doi: 10.1016/j.jbiosc.2012.03.016 Google Scholar
  166. 166.
    Meng Y, Xue Y, Yu B, Gao C, Ma Y (2012) Efficient production of l-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresour Technol 116:334–339. doi: 10.1016/j.biortech.2012.03.103 Google Scholar
  167. 167.
    Ye L, Zhou X, Hudari MSB, Li Z, Wu JC (2013) Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour Technol 132:38–44. doi: 10.1016/j.biortech.2013.01.011 Google Scholar
  168. 168.
    Osawa F, Fujii T, Nishida T, Tada N, Ohnishi T, Kobayashi O, Komeda T, Yoshida S (2009) Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Yeast 26:485–496. doi: 10.1002/yea.1702 Google Scholar
  169. 169.
    Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies — a review. J Chem Technol Biotechnol 81:1119–1129. doi: 10.1002/jctb.1486 Google Scholar
  170. 170.
    Litchfield JH (1996) Microbiological production of lactic acid. Adv Appl Microbiol 42:45–95. doi: 10.1016/S0065-2164(08)70372-1 Google Scholar
  171. 171.
    John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534. doi: 10.1007/s00253-006-0779-6 Google Scholar
  172. 172.
    Tay A, Yang ST (2002) Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng 80:1–12. doi: 10.1002/bit.10340 Google Scholar
  173. 173.
    Xu G, Chu J, Wang Y, Zhuang Y, Zhang S, Peng H (2006) Development of a continuous cell-recycle fermentation system for production of lactic acid by Lactobacillus paracasei. Process Biochem 41:2458–2463. doi: 10.1016/j.procbio.2006.05.022 Google Scholar
  174. 174.
    Wee YJ, Ryu HW (2009) Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresour Technol 100:4262–4270. doi: 10.1016/j.biortech.2009.03.074 Google Scholar
  175. 175.
    Joglekar HG, Rahman I, Babu S, Kulkarni BD, Joshi A (2006) Comparative assessment of downstream processing options for lactic acid. Sep Purif Technol 52:1–17. doi: 10.1016/j.seppur.2006.03.015 Google Scholar
  176. 176.
    Pal P, Sikder J, Roy S, Giorno L (2009) Process intensification in lactic acid production: a review of membrane based processes. Chem Eng Process 48:1549–1559. doi: 10.1016/j.cep.2009.09.003 Google Scholar
  177. 177.
    Jiang S, Zheng Z, Zhu Y, Wu X, Pan L, Luo S, Du W (2008) Repeated intermittent L-lactic acid fermentation technology by self-immobilized Rhizopus oryzae. Chinese J Biotechnol 24:1729–1733Google Scholar
  178. 178.
    Ning SY, Li SZ (2006) Primary study on fermentation of L(+)-lactic acid in fungal immobilized-bed bioreactor. Food Ferment Ind 32:22–25Google Scholar
  179. 179.
    Park EY, Kosakai Y, Okabe M (1998) Efficient production of l-(+) -lactic acid using mycelial cotton-like flocs of Rhizopusoryzae in an air-lift bioreactor. Biotechnol Prog 14:699–704. doi: 10.1021/bp9800642 Google Scholar
  180. 180.
    Hujanen M, Linko YY (1996) Effect of temperature and various nitrogen sources on L(+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol 45:307–313. doi: 10.1007/s002530050688 Google Scholar
  181. 181.
    Audet P, Paquin C, Lacroix C (1989) Sugar utilization and acid production by free and entrapped cells of streptococcus salivarius subsp. thermophilus, lactobacillus delbrueckii subsp. bulgaricus, and lactococcus lactis subsp. lactis in a whey permeate medium. Appl Environ Microbiol 55:185–189Google Scholar
  182. 182.
    Tiwari KP, Pandey A, Mishra N (1979) Lactic acid production from molasses by mixed population of lactobacilli. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite naturwissenschaftliche Abteilung: Mikrobiologie der Landwirtschaft der Technologie und des Umweltschutzes 134:544–546Google Scholar
  183. 183.
    Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 65:4211–4215Google Scholar
  184. 184.
    Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D (2006) Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl Environ Microbiol 72:5492–5499. doi: 10.1128/AEM.00683-06 Google Scholar
  185. 185.
    Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M (2007) Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 73:117–123. doi: 10.1128/AEM.01311-06 Google Scholar
  186. 186.
    Michelson T, Kask K, Jõgi E, Talpsep E, Suitso I, Nurk A (2006) l(+)-Lactic acid producer bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073. Enzyme Microb Technol 39:861–867. doi: 10.1016/j.enzmictec.2006.01.015 Google Scholar
  187. 187.
    Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29. doi: 10.1016/S0168-1605(96)01233-0 Google Scholar
  188. 188.
    Chopin A (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rev 12:21–37. doi: 10.1016/0168-6445(93)90056-F Google Scholar
  189. 189.
    Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73:25–34Google Scholar
  190. 190.
    M G, Michiteru K, Rie G, Hirokazu T, Makoto H, Tadashi H (2005) Development of a continuous electrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus. Process Biochem 40:1033–1036. doi: 10.1016/j.procbio.2004.02.028 Google Scholar
  191. 191.
    Cotton J, Pometto A, Gvozdenovic-Jeremic J (2001) Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl Microbiol Biotechnol 57:626–630. doi: 10.1007/s002530100820 Google Scholar
  192. 192.
    Iyer PV, Lee YY (1999) Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermentor-extractor system. In: Davison B, Finkelstein M (eds) Twentieth symposium on biotechnology for fuels and chemicals, Humana Press, p 409–419Google Scholar
  193. 193.
    Monteagudo JM, Aldavero M (1999) Production of L-lactic acid by Lactobacillus delbrueckii in chemostat culture using an ion exchange resins system. J Chem Technol Biotechnol 74:627–634. doi: 10.1002/(sici)1097-4660(199907)74:7<627:aid-jctb84>;2-k Google Scholar
  194. 194.
    Dey P, Pal P (2012) Direct production of l (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. J Membr Sci 389:355–362. doi: 10.1016/j.memsci.2011.10.051 Google Scholar
  195. 195.
    Vaidya AN, Pandey RA, Mudliar S, Kumar MS, Chakrabarti T, Devotta S (2005) Production and recovery of lactic acid for polylactide—an overview. Crit Rev Environ Sci Technol 35:429–467. doi: 10.1080/10643380590966181 Google Scholar
  196. 196.
    Wasewar KL (2005) Separation of lactic acid: recent advances. Chem Biochem Eng Q 19:159–172Google Scholar
  197. 197.
    Gao M, Shimamura T, Ishida N, Nagamori E, Takahashi H, Umemoto S, Omasa T, Ohtake H (2009) Extractive lactic acid fermentation with tri-n-decylamine as the extractant. Enzyme Microb Technol 44:350–354. doi: 10.1016/j.enzmictec.2008.12.001 Google Scholar
  198. 198.
    Wang Y, Huang C, Xu T (2011) Which is more competitive for production of organic acids, ion-exchange or electrodialysis with bipolar membranes? J Membr Sci 374:150–156. doi: 10.1016/j.memsci.2011.03.026 Google Scholar
  199. 199.
    Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:268–288. doi: 10.1016/j.desal.2010.04.069 Google Scholar
  200. 200.
    Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Membr Sci 288:1–12. doi: 10.1016/j.memsci.2006.11.026 Google Scholar
  201. 201.
    Eurodia production of organic or amino acids by bipolar membrane electrodialysis. Accessed 19 Jun 2013
  202. 202.
    Fernandes P, Prazeres DF, Cabral JS (2003) Membrane-Assisted Extractive Bioconversions. In: Stockar U, Wielen LAM (eds) Process integration in biochemical engineering. Springer, Berlin, pp 115–148Google Scholar
  203. 203.
    Sanchez Marcano JG, Tsotsis TT (2000) Membrane reactors. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  204. 204.
    Melin T, Rautenbach R (2007) Membranverfahren grundlagen der modul- und anlagenauslegung. Springer, BerlinGoogle Scholar
  205. 205.
    Carstensen F, Apel A, Wessling M (2012) In situ product recovery: submerged membranes versus external loop membranes. J Membr Sci 394–395:1–36. doi: 10.1016/j.memsci.2011.11.029 Google Scholar
  206. 206.
    Sondhi R, Bhave R (2001) Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes. J Membr Sci 186:41–52. doi: 10.1016/S0376-7388(00)00663-3 Google Scholar
  207. 207.
    Heran M, Eimaleh S (2000) Cross-flow microfiltration with high frequency reverse flow. In: International conference on membrane technology in environmental management. International Water Association, Tokyo, p 337–343Google Scholar
  208. 208.
    Silalahi SH, Leiknes T (2011) High frequency back-pulsing for fouling development control in ceramic microfiltration for treatment of produced water. Desalin Water Treat 28:137–152. doi: 10.5004/dwt.2011.2482 Google Scholar
  209. 209.
    Lu Z, Wei M, Yu L (2012) Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochem 47:410–415. doi: 10.1016/j.procbio.2011.11.022 Google Scholar
  210. 210.
    Singh N, Cheryan M (1998) Membrane technology in corn refining and bioproduct-processing. Starch/Staerke 50:16–23. doi: 10.1002/(sici)1521-379x(199801)50:1<16:aid-star16>;2-d Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Science MittelhessenGiessenGermany
  2. 2.Department of Chemical EngineeringKansas State UniversityManhattanUSA
  3. 3.Faculty of Biology and ChemistryJustus Liebig UniversityGiessenGermany

Personalised recommendations