Future of Biosensors: A Personal View

  • Frieder W. Scheller
  • Aysu Yarman
  • Till Bachmann
  • Thomas Hirsch
  • Stefan Kubick
  • Reinhard Renneberg
  • Soeren Schumacher
  • Ulla Wollenberger
  • Carsten Teller
  • Frank F. Bier
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 140)

Abstract

Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the “100-dollar” personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday “consumables” such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of “autonomous” biosensors will emerge.

Graphical Abstract

Keywords

Biosensors Molecularly imprinted polymers Personalized medicine 

Abbreviations

2D

Two-Dimensional

BCC

Business Communications Company, Inc

DNA

Deoxyribonucleic Acid

ELISA

Enzyme-Linked Immunosorbent Assay

ESBL

Extended-Spectrum Beta-Lactamase

FDA

Food and Drug Administration

FETs

Field Effect Transistors

GO

Graphene Oxide

HER-2

Human Epidermal Growth Factor Receptor 2

HVA

Homovanillic Acid

IUPAC

International Union of Pure and Applied Chemistry

IVD

In Vitro Diagnostics

KRAS

V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homologue

LOD

Limit of Detection

MIP

Molecularly Imprinted Polymer

MRE

Molecular Recognition Element

NGS

Next-Generation Sequencing

pAP

p-Aminophenol

POC

Point of Care

PCR

Polymerase Chain Reaction

rGO

Reduced Graphene Oxide

RNA

Ribonucleic Acid

RT-PCR

Real-Time Polymerase Chain Reaction

SELEX

Systematic Evolution of Ligands by Exponential Enrichment

TSA

Transition State Analogue

TCP

2, 4, 6-Trichlorophenol

UV

Ultraviolet

References

  1. 1.
    Thévenot DR, Toth K, Durst RA, Wilson GS (1999) Pure Appl Chem 71:2333–2348CrossRefGoogle Scholar
  2. 2.
    Clark LC Jr, Lyons C (1962) Ann N Y Acad Sci 102:29–45CrossRefGoogle Scholar
  3. 3.
    Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3396CrossRefGoogle Scholar
  4. 4.
    Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu F-S (2011) Anal Chim Acta 703:124–136CrossRefGoogle Scholar
  5. 5.
    Wang J (2008) Chem Rev 108:814–825CrossRefGoogle Scholar
  6. 6.
    Chen LQ, Zhang XE, Xie WH, Zhou YF, Zhang ZP, Cass AEG (2002) Biosens Biolectron 17:851–857CrossRefGoogle Scholar
  7. 7.
    Ludwig R, Oritz R, Schulz C, Harreither W, Sygmund C, Gorton L (2013) Anal Bioanal Chem 405:3637–3658CrossRefGoogle Scholar
  8. 8.
    Heller A, Feldman B (2008) Chem Rev 108:2482–2505CrossRefGoogle Scholar
  9. 9.
    Wilson GS, Hu Y (2000) Chem Rev 100:2693–2704Google Scholar
  10. 10.
    Chan CP, Cheung Y, Renneberg R, Seydack M (2008) Adv Biochem Eng/Biotechnol 109:123–154Google Scholar
  11. 11.
    Sano T, Smith CL, Cantor CR (1992) Science 258:120–122CrossRefGoogle Scholar
  12. 12.
    Zhou H, Fisher RJ, Papas TS (1993) Nucl Acids Res 21:6038–6039CrossRefGoogle Scholar
  13. 13.
    Nam JM, Thaxton CS, Mirkin CA (2003) Science 301:1884–1886CrossRefGoogle Scholar
  14. 14.
    Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757–1760CrossRefGoogle Scholar
  15. 15.
    Leung W, Chan P, Bosgoed F, Lehmann K, Renneberg I, Lehmann M, Renneberg R (2003) J Immunol Methods 281:109–118CrossRefGoogle Scholar
  16. 16.
    Pulli T, Höyhtyä M, Söderlund H, Takkinen K (2005) Anal Chem 77:2637–2642CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Collins FS, Green ED, Guttmacher AE, Guyer MS (2003) Nature 24:835–847CrossRefGoogle Scholar
  19. 19.
    Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Annu Rev Pharmacol Toxicol 48:653–683CrossRefGoogle Scholar
  20. 20.
    States DJ, Omenn GS, Blackwell TW, Fermin D, Eng J, Speicher DW, Hanash SM (2006) Nat Biotechnol 24:333–338CrossRefGoogle Scholar
  21. 21.
    Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, Michel D, Wunderlich K, Palzer S, Sohn K, Weber A, Burgard M, Grzesiak A, Teichert A, Brandenburg A, Koger B, Albers J, Nebling E, Bier FF (2012) Lab Chip 12:464–473CrossRefGoogle Scholar
  22. 22.
    Kingsmore SF (2006) Nat Rev Drug Discov 5:310–320CrossRefGoogle Scholar
  23. 23.
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Science 323:133–138CrossRefGoogle Scholar
  24. 24.
    MacBeath G (2002) Nat Genet 32:526–532CrossRefGoogle Scholar
  25. 25.
    Editorial, Nature Nanotechnology (2013) 8(221) http://www.nature.com/nnano/journal/v8/n4/pdf/nnano.2013.64.pdf
  26. 26.
    Dreyer DR, Ruoff RS, Bielawski CW (2010) Angew Chem Int Ed 49:9336–9344CrossRefGoogle Scholar
  27. 27.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 10:3498–3502CrossRefGoogle Scholar
  28. 28.
    Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385–388CrossRefGoogle Scholar
  29. 29.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669CrossRefGoogle Scholar
  30. 30.
    Novoselov KS, Fal′ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) Nature 490:192–200Google Scholar
  31. 31.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Nature 457:706–710Google Scholar
  32. 32.
    Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Nat Mater 8:203–207CrossRefGoogle Scholar
  33. 33.
    Park S, Ruoff RS (2009) Nat Nano 4:217–224CrossRefGoogle Scholar
  34. 34.
    Kochmann S, Hirsch T, Wolfbeis OS (2012) TrAC-Trend. Anal Chem 39:87–113Google Scholar
  35. 35.
    Guo Z, Hao T, Duan J, Wang S, Wie D (2012) Talanta 89:27–32CrossRefGoogle Scholar
  36. 36.
    Xu S, Liu Y, Wang T, Li J (2011) Anal Chem 83:3817–3823CrossRefGoogle Scholar
  37. 37.
    Wang Y, Xiao Y, Ma X, Li N, Yang X (2012) Chem Commun 48:738–740CrossRefGoogle Scholar
  38. 38.
    Cai JM, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng XL, Müllen K, Fasel R (2010) Nature 466:470–473Google Scholar
  39. 39.
    Hianik T, Wang J (2009) Electroanalysis 21:1223–1235CrossRefGoogle Scholar
  40. 40.
    Song K-M, Lee S, Ban C (2012) Sensors 12:612–631CrossRefGoogle Scholar
  41. 41.
    Zhou J, Battig MR, Wang Y (2010) Anal Bioanal Chem 398:2471–2480CrossRefGoogle Scholar
  42. 42.
    Scheller FW, Yarman A (2012) Biomimetic Sensors. In: Bard AJ, Scholz F (eds) Electrochemical Dictionary 2nd edn. Springer, Heidelberg, pp 69–70Google Scholar
  43. 43.
    Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) Anal Bioanal Chem 402:1827–1846CrossRefGoogle Scholar
  44. 44.
    Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Anal Bioanal Chem 402:3177–3204CrossRefGoogle Scholar
  45. 45.
    Servant A, Haupt K, Resmini M (2011) Chem Eur J 17:11052–11059CrossRefGoogle Scholar
  46. 46.
    Lettau K, Warsinke A, Katterle M, Danielsson B, Scheller FW (2006) Angew Chem Int Ed Engl 45:6986–6990CrossRefGoogle Scholar
  47. 47.
    Liu JQ, Wulff G (2004) Angew Chem Int Ed Engl 43:1287–1290Google Scholar
  48. 48.
    Lohmann W, Karst U (2008) Anal Bioanal Chem 391:79–96CrossRefGoogle Scholar
  49. 49.
    Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Anal Chem 81:3576–3584CrossRefGoogle Scholar
  50. 50.
    Cheng Z, Zhang L, Li Y (2004) Chemistry 10:3555–3561CrossRefGoogle Scholar
  51. 51.
    de Jesus Rodrigues Santos W, Lima PR, Tarley CR, Kubota LT (2007) Anal Bioanal Chem 389:1919–1929Google Scholar
  52. 52.
    de Jesus Rodrigues Santos W, Lima PR, Tarley CR, Höerh NF, Kubota LT (2009) Anal Chim Acta 31:170–176Google Scholar
  53. 53.
    Sartori LR, de Jesus Rodrigues Santos W, Lima PR, Kubota LT, Segatelli MG, Tarley CRT (2011) Mat Sci Eng C 31:114–119Google Scholar
  54. 54.
    Neto JRM, de Jesus Rodrigues Santos W, Lima PR, Tanaka SMCN, Tanaka AA, Kubota LT (2011) Sensor Actuat B Chem 152:220–225Google Scholar
  55. 55.
    Díaz-Díaz G, Diñeiro Y, Menéndez MI, Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2011) Polymer 52:2468–2473Google Scholar
  56. 56.
    Yarman A, Scheller FW (2013) Angew Chem Int Ed. doi:10.1002/anie.201305368
  57. 57.
    Nirenberg M, Matthaei J (1961) Proc Natl Acad Sci USA 47:1588–1602CrossRefGoogle Scholar
  58. 58.
    Katzen F, Chang G, Kudlicki W (2005) Trends Biotechnol 23:150–156CrossRefGoogle Scholar
  59. 59.
    Swartz J (2006) J Ind Microbiol Biotechnol 33:476–485CrossRefGoogle Scholar
  60. 60.
    Goerke AR, Swartz JR (2008) Biotechnol Bioeng 99:351–367CrossRefGoogle Scholar
  61. 61.
    Kanter G, Yang J, Voloshin A, Levy S, Swartz J, Levy R (2007) Blood 109:3393–3399Google Scholar
  62. 62.
    Yang J, Kanter G, Voloshin A, Michel-Reydellet N, Velkeen H, Levy R, Swartz JR (2005) Biotechnol Bioeng 89:503–511CrossRefGoogle Scholar
  63. 63.
    Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, Gold DS, Heinsohn HG, Murray CJ (2011) Biotechnol Bioeng 108:1570–1578CrossRefGoogle Scholar
  64. 64.
    Gourdon P, Alfredsson A, Pedersen A, Malmerberg E, Nyblom M, Widell M, Berntsson R, Pinhassi J, Braiman M, Hansson Ö, Bonander N, Karlsson G, Neutze R (2008) Protein Expr Purif 58:103–113CrossRefGoogle Scholar
  65. 65.
    Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M (2007) J Mol Biol 371:639–648CrossRefGoogle Scholar
  66. 66.
    Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Rüterjans H, Glaubitz C, Bernhard F (2004) Eur J Biochem 271:568–580CrossRefGoogle Scholar
  67. 67.
    Kubick S, Gerrits M, Merk H, Stiege W, Erdmann VA (2009) In vitro synthesis of posttranslationally modified membrane proteins. “Membrane Protein Crystallization” Current Topics in Membranes Vol 63, Chapter 2, Academic Press Elsevier, 25–49 Google Scholar
  68. 68.
    Sachse R, Wüstenhagen D, Šamalíková M, Gerrits M, Bier FF, Kubick S (2013) Eng Life Sci 13:39–48Google Scholar
  69. 69.
    Savage DF, Anderson CL, Robles-Colmenares Y, Newby ZE, Stroud RM (2012) Protein Sci 16:966–976CrossRefGoogle Scholar
  70. 70.
    von Groll U, Kubick S, Merk H, Stiege W, Schäfer F (2007) Advances in insect-based cell-free protein expression. In: Kudlicki W, Katzen F, Bennett P (eds) Cell-free protein expression landes bioscienceGoogle Scholar
  71. 71.
    Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Biotechnol Adv 30:1185–1194Google Scholar
  72. 72.
    Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, Wakamatsu A, Yamamoto J, Kimura K, Nishikawa T, Andoh T, Iida Y, Ishikawa K, Ito E, Kagawa N, Kaminaga C, Kanehori K, Kawakami B, Kenmochi K, Kimura R, Kobayashi M, Kuroita T, Kuwayama H, Maruyama Y, Matsuo K, Minami K, Mitsubori M, Mori M, Morishita R, Murase A, Nishikawa A, Nishikawa S, Okamoto T, Sakagami N, Sakamoto Y, Sasaki Y, Seki T, Sono S, Sugiyama A, Sumiya T, Takayama T, Takayama Y, Takeda H, Togashi T, Yahata K, Yamada H, Yanagisawa Y, Endo Y, Imamoto F, Kisu Y, Tanaka S, Isogai T, Imai J, Watanabe S, Nomura N (2008) Nat Methods 5:1011–1017CrossRefGoogle Scholar
  73. 73.
    Griffiths AD, Tawfik DS (2003) EMBO J 22:24–35CrossRefGoogle Scholar
  74. 74.
    Schwarz D, Klammt C, Koglin A, Löhr F, Schneider B, Dötsch V, Bernhard F (2007) Methods 41:355–369CrossRefGoogle Scholar
  75. 75.
    Chang H-C, Kaiser CM, Hartl FU, Barral JM (2005) J Mol Biol 353:397–409Google Scholar
  76. 76.
    Hillebrecht JR, Chong SA (2008) BMC Biotechnol 8:1790–1793CrossRefGoogle Scholar
  77. 77.
    Mann M, Jensen ON (2003) Nat Biotech 21:255–261CrossRefGoogle Scholar
  78. 78.
    Blobel G, Dobberstein B (1975) J Cell Biol 67:835–851CrossRefGoogle Scholar
  79. 79.
    Walter P, Blobel G (1983) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol 96:84–93CrossRefGoogle Scholar
  80. 80.
    Kubick S, Schacherl J, Fleischer-Notter H, Royall E, Roberts LO, Stiege W (2003) In vitro translation in an insect-based cell-free system. In: Swartz JR (ed) Cell-Free Protein Expression. Springer, New York, pp 209–217Google Scholar
  81. 81.
    Brödel AK, Raymond JA, Duman JG, Bier FF, Kubick S (2013) J Biotechnol 163:301–310CrossRefGoogle Scholar
  82. 82.
    Merk H, Gless C, Maertens B, Gerrits M, Stiege W (2012) Biotechniques 53:153–160Google Scholar
  83. 83.
    Shaklee PM, Semrau S, Malkus M, Kubick S, Dogterom M, Schmidt T (2010) Chem Biochem 11:175–179Google Scholar
  84. 84.
    Stech M, Merk H, Schenk J, Stöcklein W, Wüstenhagen D, Micheel B, Duschl C, Bier F, Kubick S (2012) J Biotechnol 164:220–231CrossRefGoogle Scholar
  85. 85.
    Khnouf R, Olivero D, Jin S, Coleman MA, Fan ZH (2010) Cell-Free expression of soluble and membrane proteins in an array device for drug screening. Anal Chem 82:7021–7026CrossRefGoogle Scholar
  86. 86.
    Casteleijn MG, Urtti A, Sarkhel S (2013) Int J Pharm 440:39–47Google Scholar
  87. 87.
    Zanders ED, Kai L, Roos C, Haberstock S, Proverbio D, Ma Y, Junge F, Karbyshev M, Dötsch V, Bernhard F (2012) Systems for the cell-free synthesis of proteins, chemical genomics and proteomics, Humana Press, New York, pp 201–225Google Scholar
  88. 88.
    Klammt C, Schwarz D, Fendler K, Haase W, Dötsch V, Bernhard F (2005) FEBS J 272:6024–6038CrossRefGoogle Scholar
  89. 89.
    Wuu JJ, Swartz JR (2008) Biochim Biophys Acta (BBA)—Biomembranes 1778:1237–1250Google Scholar
  90. 90.
    Doyle S, Cappuccio J, Hinz A, Kuhn E, Fletcher J, Arroyo E, Henderson P, Blanchette C, Walsworth V, Corzett M, Law R, Pesavento J, Segelke B, Sulchek T, Chromy B, Katzen F, Peterson T, Bench G, Kudlicki W, Hoeprich P Jr, Coleman M (2009) Cell-Free expression for nanolipoprotein particles: building a high-throughput membrane protein solubility platform, high throughput protein expression and purification. Humana Press, New Jersey, pp 273–295Google Scholar
  91. 91.
    Goren MA, Nozawa A, Makino S, Wrobel RL, Fox BG (2009) Methods Enzymol 463:647–673CrossRefGoogle Scholar
  92. 92.
    Spear BB, Heath-Chiozzi M, Huff J (2001) Trends. Mol Med 5:201–204Google Scholar
  93. 93.
    Editorial, Nature Biotechnology (2012) 30(1) http://www.nature.com/nbt/journal/v30/n1/pdf/nbt.2096.pdf
  94. 94.
    Roche Business Overview (2011) www.roche.com/diagnosticsbrochure.pdf
  95. 95.
    Blair ED (2009) Predictive tests and personalised medicine. Drug Discov World 22:27–31Google Scholar
  96. 96.
  97. 97.
    Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L (2011) Nat Rev Clin Oncol 2011(9):16–32CrossRefGoogle Scholar
  98. 98.
    Yarman A, Wollenberger U, Scheller FW (2013) Electrochim. Acta doi: org/10.1016/j.electacta.2013.03.154
  99. 99.
    Carrara S, Cavallini A, Erokhin V, De Micheli G (2011) Biosens Bioelectron 26:3914–3919CrossRefGoogle Scholar
  100. 100.
    Liu SQ, Peng L, Yang XD, Wu YF, He L (2008) Anal Biochem 375:209–216CrossRefGoogle Scholar
  101. 101.
    Panicco P, Dodhia VR, Fantuzzi A, Gilardi G (2011) Anal Chem 83:2179–2186CrossRefGoogle Scholar
  102. 102.
    Yang ML, Kabulski JL, Wollenberg L, Chen XQ, Subramanian M, Tracy TS, Lederman D, Gannett PM, Wu N (2009) Drug Metab Dispos 37:892–899CrossRefGoogle Scholar
  103. 103.
    Huang M, Xu X, Yang H, Liu S (2012) RSC Adv 2:12844–12850CrossRefGoogle Scholar
  104. 104.
    Krishnan S, Wasalathanthri D, Zhao LL, Schenkman JB, Rusling JF (2011) J Am Chem Soc 133:1459–1465CrossRefGoogle Scholar
  105. 105.
    Mie Y, Suzuki M, Komatsu Y (2009) J Am Chem Soc 131:6646–6647CrossRefGoogle Scholar
  106. 106.
    Allison M (2008) Nat Biotechnol 26:509–517CrossRefGoogle Scholar
  107. 107.
    Myung S, Solanki A, Kim C, Park J, Kim KS, Lee KB (2011) Adv Mater 23:2221–2225Google Scholar
  108. 108.
    Loo L, Capobianco JA, Wu W, Gao X, Shih WY, Shih WH, Pourrezaei K, Robinson MK, Adams GP (2011) Anal Chem 83:3392–3399CrossRefGoogle Scholar
  109. 109.
    Munzone E, Nolé F, Goldhirsch A, Botteri E, Esposito A, Zorzino L, Curigliano G, Minchella I, Adamoli L, Cassatella MC, Casadio C, Sandri MT (2010) Clin Breast Cancer 10:392–397CrossRefGoogle Scholar
  110. 110.
    Baj-Rossi C, De Micheli C, Carrara S (2012) Sensors 12:6520–6537Google Scholar
  111. 111.
    Hirani R, Connolly AR, Putral L, Dobrovic A, Trau M (2011) Anal Chem 83:8215–8221CrossRefGoogle Scholar
  112. 112.
    Jeong S, Han SR, Lee YJ, Kim JH, Lee SW (2010) Oligonucleotides 20:155–161CrossRefGoogle Scholar
  113. 113.
    Nonaka Y, Yoshida W, Abe K, Ferri S, Schulze H, Bachmann TT, Ikebukuro K (2013) Anal Chem 85:1132–1137CrossRefGoogle Scholar
  114. 114.
    Shen F, Du W, Kreutz JE, Fok A, Ismagilov RF (2010) Lab Chip 10:2666–2672CrossRefGoogle Scholar
  115. 115.
    Théry C, Ostrowski M, Segura E (2009) Nat Rev Immunol 9:581–593CrossRefGoogle Scholar
  116. 116.
  117. 117.
    World More at Risk from Markets and Mother Nature—Global Risks (2013) Report. http://www.weforum.org/globalrisks2013
  118. 118.
    Annual Report of the Chief Medical Officer (2011) Volume Two, UK Department of Health https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/138331/CMO_Annual_Report_Volume_2_2011.pdf
  119. 119.
    Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Pater-son DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunara-yan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Lancet Infect Dis 10:597–602Google Scholar
  120. 120.
    Elander RP (2003) Appl Microbiol Biotechnol 61:385–392Google Scholar
  121. 121.
    Pichichero ME (2002) JAMA 287:3133–3135Google Scholar
  122. 122.
    Centers for Disease Control and Prevention (CDC) (2011) MMWR Morb Mortal Wkly Rep 60:1153–1156Google Scholar
  123. 123.
    Leinberger DM, Grimm V, Rubtsova M, Weile J, Schröppel K, Wichelhaus TA, Knabbe C, Schmid RD, Bachmann TT (2010) J Clin Microbiol 48:460–471CrossRefGoogle Scholar
  124. 124.
    Pierce KE, Peter H, Bachmann TT, Volpe C, Mistry R, Rice JE, Wangh LJ (2013) J Mol Diagn 15:291–298CrossRefGoogle Scholar
  125. 125.
    Corrigan DK, Schulze H, Henihan G, Ciani I, Giraud G, Terry JG, Walton AJ, Pethig R, Ghazal P, Crain J, Campbell CJ, Mount AR, Bachmann TT (2012) Biosens Bioelectron 34:178–184CrossRefGoogle Scholar
  126. 126.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund HNCAC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal A, Swanton C (2012) N Engl J Med 366:883–892CrossRefGoogle Scholar
  127. 127.
    Harris SR, Cartwright EJ, Török ME, Holden MT, Brown NM, Ogilvy-Stuart AL, Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ (2013) Lancet Infect Dis 13:130–136CrossRefGoogle Scholar
  128. 128.
    Purushothaman S, Toumazou C, Georgiou J (2002) Towards fast solid state DNA sequencing, IEEE international symposium on circuits and systems, Phoenix, Arizona, 26–29 May 2002, New York, IEEE 2002, pp 169–172Google Scholar
  129. 129.
    Schneider GF, Dekker C (2012) Nat Biotechnol 30:326–328CrossRefGoogle Scholar
  130. 130.
    Bergveld P (2003) Sensor Actuat B Chem 88:1–20CrossRefGoogle Scholar
  131. 131.
    Wise KD, Angell JB, Starr A (1970) IEEE Trans Biomed Eng BME 17:238–247Google Scholar
  132. 132.
    Windmiller J, Wang J (2013) Electroanalysis 25:29–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frieder W. Scheller
    • 1
    • 2
  • Aysu Yarman
    • 1
    • 2
  • Till Bachmann
    • 3
  • Thomas Hirsch
    • 4
  • Stefan Kubick
    • 1
  • Reinhard Renneberg
    • 5
  • Soeren Schumacher
    • 1
  • Ulla Wollenberger
    • 2
  • Carsten Teller
    • 1
  • Frank F. Bier
    • 1
    • 2
  1. 1.Fraunhofer Institute for Biomedical Engineering IBMTPotsdamGermany
  2. 2.Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  3. 3.Division of Pathway MedicineUniversity of Edinburgh Chancellor’s BuildingEdinburghScotland
  4. 4.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany
  5. 5.Department of ChemistryThe Hong Kong University of Science and TechnologyKowloonChina

Personalised recommendations