DNAzyme-Functionalized Gold Nanoparticles for Biosensing

Chapter

Abstract

Recent progress in using DNAzyme-functionalized gold nanoparticles (AuNPs) for biosensing is summarized in this chapter. A variety of methods, including those for attaching DNA on AuNPs, detecting metal ions and small molecules by DNAzyme-functionalized AuNPs, and intracellular applications of DNAzyme-functionalized AuNPs are discussed. DNAzyme-functionalized AuNPs will increasingly play more important roles in biosensing and many other multidisciplinary applications.

Graphical Abstract

This chapter covers the recent advancement in biosensing applications of DNAzyme-functionalized gold nanoparticles, including the detection of metal ions, small molecules, and intracellular imaging.

Keywords

Biosensing DNAzyme Gold nanoparticle Intracellular imaging 

Abbreviations

AuNP

Gold Nanoparticle

DNA

Deoxyribonucleic Acid

dsDNA

Double-stranded DNA

PEG

Poly-(Ethylene Glycol)

SERS

Surface Enhanced Raman Spectroscopy

SPR

Surface Plasmon Resonance

ssDNA

Single-stranded DNA

References

  1. 1.
    Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738Google Scholar
  2. 2.
    Saenger W (1984) Principles of nucleic acid structure. Springer, New YorkGoogle Scholar
  3. 3.
    Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229Google Scholar
  4. 4.
    Cuenoud B, Szostak JW (1995) A DNA metalloenzyme with DNA ligase activity. Nature 375:611–614Google Scholar
  5. 5.
    Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded-DNA. Nature 344:467–468Google Scholar
  6. 6.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355:564–566Google Scholar
  7. 7.
    Ellington AD, Szostak JW (1992) Selection invitro of single-stranded-DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852Google Scholar
  8. 8.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510Google Scholar
  9. 9.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822Google Scholar
  10. 10.
    Breaker RR, Joyce GF (1995) A DNA enzyme with Mg2 + -dependent RNA phosphoesterase activity. Chem Biol 2:655–660Google Scholar
  11. 11.
    Carmi N, Shultz LA, Breaker RR (1996) In vitro selection of self-cleaving DNAs. Chem Biol 3:1039–1046Google Scholar
  12. 12.
    Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94:4262–4266Google Scholar
  13. 13.
    Carmi N, Balkhi SR, Breaker RR (1998) Cleaving DNA with DNA. Proc Natl Acad Sci USA 95:2233–2237Google Scholar
  14. 14.
    Feldman AR, Sen D (2001) A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. J Mol Biol 313:283–294Google Scholar
  15. 15.
    Liu J, Lu Y (2007) Rational design of “Turn-On” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed 46:7587–7590Google Scholar
  16. 16.
    Liu JW, Brown AK, Meng XL, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci USA 104:2056–2061Google Scholar
  17. 17.
    Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin DM (2008) A highly selective DNAzyme sensor for mercuric ions. Angew Chem Int Ed 47:4346–4350Google Scholar
  18. 18.
    Chandra M, Sachdeva A, Silverman SK (2009) DNA-catalyzed sequence-specific hydrolysis of DNA. Nat Chem Biol 5:718–720Google Scholar
  19. 19.
    Sreedhara A, Li YF, Breaker RR (2004) Ligating DNA with DNA. J Am Chem Soc 126:3454–3460Google Scholar
  20. 20.
    Purtha WE, Coppins RL, Smalley MK, Silverman SK (2005) General deoxyribozyme-catalyzed synthesis of native 3′-5′ RNA linkages. J Am Chem Soc 127:13124–13125Google Scholar
  21. 21.
    Li YF, Breaker RR (1999) Phosphorylating DNA with DNA. Proc Natl Acad Sci USA 96:2746–2751Google Scholar
  22. 22.
    Li YF, Liu Y, Breaker RR (2000) Capping DNA with DNA. Biochemistry 39:3106–3114Google Scholar
  23. 23.
    Sheppard TL, Ordoukhanian P, Joyce GF (2000) A DNA enzyme with N-glycosylase activity. Proc Natl Acad Sci USA 97:7802–7807Google Scholar
  24. 24.
    Chinnapen DJF, Sen D (2004) A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc Natl Acad Sci USA 101:65–69Google Scholar
  25. 25.
    Thorne RE, Chinnapen DJF, Sekhon GS, Sen D (2009) A deoxyribozyme, Sero1C, uses light and serotonin to repair diverse pyrimidine dimers in DNA. J Mol Biol 388:21–29Google Scholar
  26. 26.
    Pradeepkumar PI, Hobartner C, Baum DA, Silverman SK (2008) DNA-catalyzed formation of nucleopeptide linkages. Angew Chem Int Ed 47:1753–1757Google Scholar
  27. 27.
    Sachdeva A, Silverman SK (2010) DNA-catalyzed serine side chain reactivity and selectivity. Chem Commun 46:2215–2217Google Scholar
  28. 28.
    Li YF, Sen D (1996) A catalytic DNA for porphyrin metallation. Nat Struct Biol 3:743–747Google Scholar
  29. 29.
    Travascio P, Li YF, Sen D (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem Biol 5:505–517Google Scholar
  30. 30.
    Poon LCH, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D (2011) Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc 133:1877–1884Google Scholar
  31. 31.
    Chandra M, Silverman SK (2008) DNA and RNA can be equally efficient catalysts for carbon–carbon bond formation. J Am Chem Soc 130:2936–2937Google Scholar
  32. 32.
    Kurreck J (2003) Antisense technologies—improvement through novel chemical modifications. Eur J Biochem 270:1628–1644Google Scholar
  33. 33.
    Schubert S, Gul DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (2003) RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res 31:5982–5992Google Scholar
  34. 34.
    Kuwabara T, Warashina M, Taira K (2000) Allosterically controllable ribozymes with biosensor functions. Curr Opin Chem Biol 4:669–677Google Scholar
  35. 35.
    Navani NK, Li YF (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281Google Scholar
  36. 36.
    Vannela R, Adriaens P (2006) DNAzymes in environmental sensing. Crit Rev Environ Sci Technol 36:375–403Google Scholar
  37. 37.
    Mok W, Li YF (2008) Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8:7050–7084Google Scholar
  38. 38.
    Palchetti I, Mascini M (2008) Nucleic acid biosensors for environmental pollution monitoring. Analyst 133:846–854Google Scholar
  39. 39.
    Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165Google Scholar
  40. 40.
    Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707:7–17Google Scholar
  41. 41.
    Ma DL, Chan DSH, Man BYW, Leung CH (2011) Oligonucleotide-based luminescent detection of metal Ions. Chem Asian J. 6:986–1003Google Scholar
  42. 42.
    Lu Y, Liu JW, Li J, Bruesehoff PJ, Pavot CMB, Brown AK (2003) New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron 18:529–540Google Scholar
  43. 43.
    Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998Google Scholar
  44. 44.
    Nagraj N, Lu Y (2011) Catalytic nucleic acid biosensors for environmental monitoring. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. Royal Society of Chemistry, CambridgeGoogle Scholar
  45. 45.
    Zhang XB, Kong RM, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128Google Scholar
  46. 46.
    Stojanovic MN (2008) Molecular computing with deoxyribozymes. Prog Nucleic Acid Res Mol Biol 82:199–217Google Scholar
  47. 47.
    Chen X, Ellington AD (2010) Shaping up nucleic acid computation. Curr Opin Biotechnol 21:392–400Google Scholar
  48. 48.
    Teller C, Willner I (2010) Functional nucleic acid nanostructures and DNA machines. Curr Opin Biotechnol 21:376–391Google Scholar
  49. 49.
    Pyle AM, Chu VT, Jankowsky E, Boudvillain H (2000) Using DNAzymes to cut, process, and map RNA molecules for structural studies or modification. Methods Enzymol 317:140–146Google Scholar
  50. 50.
    Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21:1457–1465Google Scholar
  51. 51.
    Sioud M, Iversen PO (2005) Ribozymes, DNAzymes and small interfering RNAs as therapeutics. Curr Drug Targets 6:647–653Google Scholar
  52. 52.
    Bhindi R, Fahmy RG, Lowe HC, Chesterman CN, Dass CR, Cairns MJ, Saravolac EG, Sun LQ, Khachigian LM (2007) Brothers in arms—DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies. Am J Pathol 171:1079–1088Google Scholar
  53. 53.
    Isaka Y (2007) DNAzymes as potential therapeutic molecules. Curr Opin Mol Ther 9:132–136Google Scholar
  54. 54.
    Tan ML, Choong PFM, Dass CR (2009) DNAzyme delivery systems: Getting past first base. Expert Opin Drug Deliv 6:127–138Google Scholar
  55. 55.
    Sun LQ, Cairns MJ, Saravolac EG, Baker A, Gerlach WL (2000) Catalytic nucleic acids: From lab to applications. Pharmacol Rev 52:325–347Google Scholar
  56. 56.
    Emilsson GM, Breaker RR (2002) Deoxyribozymes: new activities and new applications. Cell Mol Life Sci 59:596–607Google Scholar
  57. 57.
    Breaker RR (2004) Natural and engineered nucleic acids as tools to explore biology. Nature 432:838–845Google Scholar
  58. 58.
    Peracchi A (2005) DNA catalysis: potential, limitations, open questions. ChemBioChem 6:1316–1322Google Scholar
  59. 59.
    Silverman SK (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 33:6151–6163Google Scholar
  60. 60.
    Baum DA, Silverman SK (2008) Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci 65:2156–2174Google Scholar
  61. 61.
    Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: Past, present, and future. Langmuir 25:13840–13851Google Scholar
  62. 62.
    Schmid G, Corain B (2003) Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J, Inorg Chem, pp 3081–3098Google Scholar
  63. 63.
    Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665Google Scholar
  64. 64.
    Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2:145–150Google Scholar
  65. 65.
    Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791Google Scholar
  66. 66.
    Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325Google Scholar
  67. 67.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103Google Scholar
  68. 68.
    Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649Google Scholar
  69. 69.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc, Chem Commun 7:801–802Google Scholar
  70. 70.
    Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc, Chem Commun 16:1655–1656Google Scholar
  71. 71.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660Google Scholar
  72. 72.
    Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217Google Scholar
  73. 73.
    Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664Google Scholar
  74. 74.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067Google Scholar
  75. 75.
    Kim F, Song JH, Yang PD (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317Google Scholar
  76. 76.
    Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82Google Scholar
  77. 77.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962Google Scholar
  78. 78.
    Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901Google Scholar
  79. 79.
    Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416Google Scholar
  80. 80.
    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910Google Scholar
  81. 81.
    Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488Google Scholar
  82. 82.
    Metraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17:412–415Google Scholar
  83. 83.
    Millstone JE, Park S, Shuford KL, Qin LD, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313Google Scholar
  84. 84.
    Millstone JE, Metraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16:1209–1214Google Scholar
  85. 85.
    Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li XD, Xia YN (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–477Google Scholar
  86. 86.
    Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595Google Scholar
  87. 87.
    Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924Google Scholar
  88. 88.
    Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289:606–608Google Scholar
  89. 89.
    Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529Google Scholar
  90. 90.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346Google Scholar
  91. 91.
    Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24:4811–4841Google Scholar
  92. 92.
    Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862Google Scholar
  93. 93.
    Ofir Y, Samanta B, Rotello VM (2008) Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 37:1814–1823Google Scholar
  94. 94.
    Prasad BLV, Sorensen CM, Klabunde KJ (2008) Gold nanoparticle superlattices. Chem Soc Rev 37:1871–1883Google Scholar
  95. 95.
    Niemeyer CM, Simon U (2005) DNA-based assembly of metal nanoparticles. Eur J Inorg Chem 18:3641–3655Google Scholar
  96. 96.
    Lu Y, Liu JW (2007) Smart nanomaterials inspired by biology: Dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 40:315–323Google Scholar
  97. 97.
    Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37:2403–2412Google Scholar
  98. 98.
    Wang ZD, Lu Y (2009) Functional DNA directed assembly of nanomaterials for biosensing. J Mater Chem 19:1788–1798Google Scholar
  99. 99.
    Kumar A, Hwang JH, Kumar S, Nam JM (2012) Tuning and assembling metal nanostructures with DNA. Chem Commun 49:2597–2609Google Scholar
  100. 100.
    Chen MS, Goodman DW (2006) Catalytically active gold: from nanoparticles to ultrathin films. Acc Chem Res 39:739–746Google Scholar
  101. 101.
    Hvolbaek B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Norskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2:14–18Google Scholar
  102. 102.
    Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724Google Scholar
  103. 103.
    Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126Google Scholar
  104. 104.
    Xu WL, Shen H, Liu GK, Chen P (2009) Single-molecule kinetics of nanoparticle catalysis. Nano Res 2:911–922Google Scholar
  105. 105.
    Ma Z, Dai S (2011) Development of novel supported gold catalysts: a materials perspective. Nano Res 4:3–32Google Scholar
  106. 106.
    Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506Google Scholar
  107. 107.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862Google Scholar
  108. 108.
    Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192Google Scholar
  109. 109.
    Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557Google Scholar
  110. 110.
    Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001–1011Google Scholar
  111. 111.
    Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045Google Scholar
  112. 112.
    Guo S, Dong S (2009) Biomolecule-nanoparticle hybrids for electrochemical biosensors. TRAC-Trend Anal Chem 28:96–109Google Scholar
  113. 113.
    Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253:1607–1618Google Scholar
  114. 114.
    Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417:1–16Google Scholar
  115. 115.
    Lin Y-W, Huang C-C, Chang H-T (2011) Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136:863–871Google Scholar
  116. 116.
    Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433Google Scholar
  117. 117.
    Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866Google Scholar
  118. 118.
    Lei JP, Ju HX (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41:2122–2134Google Scholar
  119. 119.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779Google Scholar
  120. 120.
    Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetricbiosensing assays. ChemBioChem 9:2363–2371Google Scholar
  121. 121.
    Lin Y-W, Liu C-W, Chang H-T (2009) DNA functionalized gold nanoparticles for bioanalysis. Anal Methods 1:14–24Google Scholar
  122. 122.
    Zanoli LM, D’Agata R, Spoto G (2012) Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem 402:1759–1771Google Scholar
  123. 123.
    Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094Google Scholar
  124. 124.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120Google Scholar
  125. 125.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2:681–693Google Scholar
  126. 126.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730Google Scholar
  127. 127.
    Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90Google Scholar
  128. 128.
    Sperling RA, Rivera gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908Google Scholar
  129. 129.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782Google Scholar
  130. 130.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294Google Scholar
  131. 131.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779Google Scholar
  132. 132.
    Lu Y, Liu JW (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588Google Scholar
  133. 133.
    Lu Y, Liu JW (2009) Catalyst-functionalized nanomaterials. WIREs Nanomed Nanobi. 1:35–46Google Scholar
  134. 134.
    Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Delivery Rev 62:592–605Google Scholar
  135. 135.
    Sato K, Hosokawa K, Maeda M (2007) Colorimetric biosensors based on DNA-nanoparticle conjugates. Anal Sci 23:17–20Google Scholar
  136. 136.
    Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2 + and Pb2 + heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394:33–46Google Scholar
  137. 137.
    Wang H, Yang RH, Yang L, Tan WH (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460Google Scholar
  138. 138.
    de la Escosura-Muniz A, Medina M, Merkoci A (2011) New trends in DNA sensors for environmental applications: nanomaterials, miniaturization, and lab-on-a-chip technology. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. Royal Society of Chemistry, CambridgeGoogle Scholar
  139. 139.
    Sen D, Geyer CR (1998) DNA enzymes. Curr Opin Chem Biol 2:680–687Google Scholar
  140. 140.
    Famulok M, Jenne A (1999) Catalysis based on nucleic acid structures. In: Schmidtchen FP (ed) Implementation and redesign of catalytic function in biopolymers. Springer, BerlinGoogle Scholar
  141. 141.
    Kurz M, Breaker RR (1999) In vitro selection of nucleic acid enzymes. In: Famulok M, Winnacker E-L, Wong C-H (eds) Combinatorial Chemistry in Biology. Springer, BerlinGoogle Scholar
  142. 142.
    Joyce GF (2001) RNA cleavage by the 10–23 DNA enzyme. Methods Enzymol 341:503–517Google Scholar
  143. 143.
    Bittker JA, Phillips KJ, Liu DR (2002) Recent advances in the in vitro evolution of nucleic acids. Curr Opin Chem Biol 6:367–374Google Scholar
  144. 144.
    Cairns MJ, Saravolac EG, Sun LQ (2002) Catalytic DNA: a novel tool for gene suppression. Curr Drug Targets 3:269–279Google Scholar
  145. 145.
    Achenbach JC, Chiuman W, Cruz RPG, Li Y (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321–336Google Scholar
  146. 146.
    Joyce GF (2004) Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73:791–836Google Scholar
  147. 147.
    Peracchi A (2004) Prospects for antiviral ribozymes and deoxyribozymes. Rev Med Virol 14:47–64Google Scholar
  148. 148.
    Schubert S, Kurreck J (2004) Ribozyme- and deoxyribozyme-strategies for medical applications. Curr Drug Targets 5:667–681Google Scholar
  149. 149.
    Fiammengo R, Jaschke A (2005) Nucleic acid enzymes. Curr Opin Biotechnol 16:614–621Google Scholar
  150. 150.
    Lu Y (2006) Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges. Inorg Chem 45:9930–9940Google Scholar
  151. 151.
    Hobartner C, Silverman SK (2007) Recent advances in DNA catalysis. Biopolymers 87:279–292Google Scholar
  152. 152.
    Benson VL, Khachigian LM, Lowe HC (2008) DNAzymes and cardiovascular disease. Br J Pharmacol 154:741–748Google Scholar
  153. 153.
    Dass CR, Choong PFM, Khachigian LM (2008) DNAzyme technology and cancer therapy: cleave and let die. Mol Cancer Ther 7:243–251Google Scholar
  154. 154.
    Pan WH, Clawson GA (2008) Catalytic DNAzymes: derivations and functions. Expert Opin Biol Ther 8:1071–1085Google Scholar
  155. 155.
    Silverman SK (2008) Catalytic DNA (deoxyribozymes) for synthetic applications—current abilities and future prospects. Chem Commun 14:3467–3485Google Scholar
  156. 156.
    Burton AS, Lehman N (2009) DNA before proteins? Recent discoveries in nucleic acid catalysis strengthen the case. Astrobiology 9:125–130Google Scholar
  157. 157.
    Silverman SK (2009) Deoxyribozymes: selection design and serendipity in the development of DNA catalysts. Acc Chem Res 42:1521–1531Google Scholar
  158. 158.
    Silverman SK, Baum DA (2009) Use of deoxyribozymes in RNA research. Methods Enzymol 469:95–117Google Scholar
  159. 159.
    Tan ML, Choon PFM, Dass CR (2009) Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol 61:3–12Google Scholar
  160. 160.
    Franzen S (2010) Expanding the catalytic repertoire of ribozymes and deoxyribozymes beyond RNA substrates. Curr Opin Mol Ther 12:223–232Google Scholar
  161. 161.
    Heinisch T, Ward TR (2010) Design strategies for the creation of artificial metalloenzymes. Curr Opin Chem Biol 14:184–199Google Scholar
  162. 162.
    Kuwahara M, Sugimoto N (2010) Molecular evolution of functional nucleic acids with chemical modifications. Molecules 15:5423–5444Google Scholar
  163. 163.
    Mastroyiannopoulos NP, Uney JB, Phylactou LA (2010) The application of ribozymes and DNAzymes in muscle and brain. Molecules 15:5460–5472Google Scholar
  164. 164.
    McManus SA, Li YF (2010) The structural diversity of deoxyribozymes. Molecules 15:6269–6284Google Scholar
  165. 165.
    Schlosser K, Li YF (2010) A versatile endoribonuclease mimic made of DNA: characteristics and applications of the 8–17 RNA-cleaving DNAzyme. ChemBioChem 11:866–879Google Scholar
  166. 166.
    Sigel RKO, Sigel H (2010) A stability concept for metal Ion coordination to single-stranded nucleic acids and affinities of individual sites. Acc Chem Res 43:974–984Google Scholar
  167. 167.
    Deuss PJ, den Heeten R, Laan W, Kamer PCJ (2011) Bioinspired catalyst design and artificial metalloenzymes. Chem Eur J 17:4680–4698Google Scholar
  168. 168.
    Lau PS, Li YF (2011) Functional nucleic acids as molecular recognition elements for small organic and biological molecules. Curr Org Chem 15:557–575Google Scholar
  169. 169.
    Sen D, Poon LCH (2011) RNA and DNA complexes with hemin Fe(III) heme are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit Rev Biochem Mol Biol 46:478–492Google Scholar
  170. 170.
    Takezawa Y, Shionoya M (2012) Metal-mediated DNA base pairing: alternatives to hydrogen-bonded watson-crick base pairs. Acc Chem Res 45:2066–2076Google Scholar
  171. 171.
    Lu Y (2002) New transition-metal-dependent DNA-zymes as efficient endonucleases and as selective metal biosensors. Chem Eur J 8:4589–4596Google Scholar
  172. 172.
    Lu Y (2009) DNAzyme and aptamer sensors for on-site and real-time detection of a broad range of environmental toxins. Environ Mol Mutagen 50:534Google Scholar
  173. 173.
    Wang G, Wang Y, Chen L, Choo J (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25:1859–1868Google Scholar
  174. 174.
    Roh YH, Ruiz RCH, Peng S, Lee JB, Luo D (2011) Engineering DNA-based functional materials. Chem Soc Rev 40:5730–5744Google Scholar
  175. 175.
    Tan SJ, Campolongo MJ, Luo D, Cheng WL (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276Google Scholar
  176. 176.
    Xing H, Ngo Yin W, Xiang Y, Lu Y (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16:429–435Google Scholar
  177. 177.
    Willner I, Willner B, Katz E (2007) Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70:2–11Google Scholar
  178. 178.
    Sau TK, Rogach AL, Jaeckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825Google Scholar
  179. 179.
    Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science 318:430–433Google Scholar
  180. 180.
    Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle N(C8H17)(4) Au-25(SCH2CH2Ph)(18). J Am Chem Soc. 130:3754–3755Google Scholar
  181. 181.
    Hakkinen H (2012) The gold-sulfur interface at the nanoscale. Nature Chem 4:443–455Google Scholar
  182. 182.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609Google Scholar
  183. 183.
    Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611Google Scholar
  184. 184.
    Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541Google Scholar
  185. 185.
    Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318Google Scholar
  186. 186.
    Parak WJ, Pellegrino T, Micheel CM, Gerion D, Williams SC, Alivisatos AP (2003) Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett 3:33–36Google Scholar
  187. 187.
    Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett 1:32–35Google Scholar
  188. 188.
    Ackerson CJ, Sykes MT, Kornberg RD (2005) Defined DNA/nanoparticle conjugates. Proc Natl Acad Sci USA 102:13383–13385Google Scholar
  189. 189.
    Claridge SA, Mastroianni AJ, Au YB, Liang HW, Micheel CM, Frechet JMJ, Alivisatos AP (2008) Enzymatic ligation creates discrete multinanoparticle building blocks for self-assembly. J Am Chem Soc 130:9598–9605Google Scholar
  190. 190.
    Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459Google Scholar
  191. 191.
    Claridge SA, Liang HW, Basu SR, Frechet JMJ, Alivisatos AP (2008) Isolation of discrete nanoparticle—DNA conjugates for plasmonic applications. Nano Lett 8:1202–1206Google Scholar
  192. 192.
    Li ZT, Cheng EJ, Huang WX, Zhang T, Yang ZQ, Liu DS, Tang ZY (2011) Improving the Yield of Mono-DNA-Functionalized Gold Nanoparticles through Dual Steric Hindrance. J Am Chem Soc 133:15284–15287Google Scholar
  193. 193.
    Pei H, Li F, Wan Y, Wei M, Liu HJ, Su Y, Chen N, Huang Q, Fan CH (2012) Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. J Am Chem Soc 134:11876–11879Google Scholar
  194. 194.
    Liu JW, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643Google Scholar
  195. 195.
    Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252Google Scholar
  196. 196.
    Wang ZD, Zhang JQ, Ekman JM, Kenis PJA, Lu Y (2010) DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett 10:1886–1891Google Scholar
  197. 197.
    Wang ZD, Tang LH, Tan LH, Li JH, Lu Y (2012) Discovery of the DNA “genetic code” for abiological gold nanoparticle morphologies. Angew Chem Int Ed 51:9078–9082Google Scholar
  198. 198.
    Pena SRN, Raina S, Goodrich GP, Fedoroff NV, Keating CD (2002) Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. J Am Chem Soc 124:7314–7323Google Scholar
  199. 199.
    Kanaras AG, Wang ZX, Bates AD, Cosstick R, Brust M (2003) Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of DNA/gold systems. Angew Chem Int Ed 42:191–194Google Scholar
  200. 200.
    Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128:9286–9287Google Scholar
  201. 201.
    Huo F, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306Google Scholar
  202. 202.
    Zhao WA, Gao Y, Kandadai SA, Brook MA, Li YF (2006) DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew Chem Int Ed 45:2409–2413Google Scholar
  203. 203.
    Zhao W, Lam JCF, Chiuman W, Brook MA, Li Y (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small. 4:810–816Google Scholar
  204. 204.
    Xiang Y, Wang ZD, Xing H, Lu Y (2013) Expanding DNAzyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directed assembly of nanomaterials. Chem Sci 4:398–404Google Scholar
  205. 205.
    Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363:120–126Google Scholar
  206. 206.
    He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077Google Scholar
  207. 207.
    Patolsky F, Ranjit KT, Lichtenstein A, Willner I (2000) Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem Commun 12:1025–1026Google Scholar
  208. 208.
    Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760Google Scholar
  209. 209.
    Zhou XC, O’Shea SJ, Li SFY (2000) Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem Commun 11:953–954Google Scholar
  210. 210.
    Authier L, Grossiord C, Brossier P, Limoges B (2001) Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 73:4450–4456Google Scholar
  211. 211.
    Cai H, Xu C, He PG, Fang YZ (2001) Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 510:78–85Google Scholar
  212. 212.
    Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370Google Scholar
  213. 213.
    Wang J, Xu DK, Kawde AN, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576–5581Google Scholar
  214. 214.
    Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540Google Scholar
  215. 215.
    Maxwell DJ, Taylor JR, Nie SM (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612Google Scholar
  216. 216.
    Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506Google Scholar
  217. 217.
    Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75:2181–2187Google Scholar
  218. 218.
    Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101:14036–14039Google Scholar
  219. 219.
    Li HX, Rothberg LJ (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76:5414–5417Google Scholar
  220. 220.
    Li HX, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961Google Scholar
  221. 221.
    Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett 4:1683–1687Google Scholar
  222. 222.
    Storhoff JJ, Lucas AD, Garimella V, Bao YP, Muller UR (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22:883–887Google Scholar
  223. 223.
    Bao YP, Huber M, Wei TF, Marla SS, Storhoff JJ, Muller UR (2005) SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res 33:e15Google Scholar
  224. 224.
    Dyadyusha L, Yin H, Jaiswal S, Brown T, Baumberg JJ, Booy FP, Melvin T (2005) Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun 25:3201–3203Google Scholar
  225. 225.
    Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77:6976–6984Google Scholar
  226. 226.
    Stoeva SI, Huo FW, Lee JS, Mirkin CA (2005) Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc 127:15362–15363Google Scholar
  227. 227.
    Li YA, Wark AW, Lee HJ, Corn RM (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78:3158–3164Google Scholar
  228. 228.
    Ray PC (2006) Diagnostics of single base-mismatch DNA hybridization on gold nanoparticles by using the hyper-Rayleigh scattering technique. Angew Chem Int Ed 45:1151–1154Google Scholar
  229. 229.
    Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575–8580Google Scholar
  230. 230.
    Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477–15479Google Scholar
  231. 231.
    Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2:2888–2895Google Scholar
  232. 232.
    Song SP, Liang ZQ, Zhang J, Wang LH, Li GX, Fan CH (2009) Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. Angew Chem Int Ed 48:8670–8674Google Scholar
  233. 233.
    Xue X, Xu W, Wang F, Liu X (2009) Multiplex single-nucleotide polymorphism typing by nanoparticle-coupled DNA-templated reactions. J Am Chem Soc 131:11668–11669Google Scholar
  234. 234.
    Bai X, Shao C, Han X, Li Y, Guan Y, Deng Z (2010) Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay: toward a generalized sensitivity-enhancing strategy. Biosens Bioelectron 25:1984–1988Google Scholar
  235. 235.
    Chen JIL, Chen Y, Ginger DS (2010) plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J Am Chem Soc 132:9600–9601Google Scholar
  236. 236.
    Jung YL, Jung C, Parab H, Cho D-Y, Park HG (2011) Colorimetric SNP genotyping based on allele-specific PCR by using a thiol-labeled primer. ChemBioChem 12:1387–1390Google Scholar
  237. 237.
    Oh JH, Lee JS (2011) Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a single-base mutation in the breast cancer gene BRCA1. Anal Chem 83:7364–7370Google Scholar
  238. 238.
    Acuna GP, Moller FM, Holzmeister P, Beater S, Lalkens B, Tinnefeld P (2012) Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338:506–510Google Scholar
  239. 239.
    Deng H, Xu Y, Liu YH, Che ZJ, Guo HL, Shan SX, Sun Y, Liu XF, Huang KY, Ma XW, Wu Y, Liang XJ (2012) Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal Chem 84:1253–1258Google Scholar
  240. 240.
    Gao F, Zhu Z, Lei J, Geng Y, Ju H (2013) Sub-femtomolar electrochemical detection of DNA using surface circular strand-replacement polymerization and gold nanoparticle catalyzed silver deposition for signal amplification. Biosens Bioelectron 39:199–203Google Scholar
  241. 241.
    Liu JW, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2 + detection. J Am Chem Soc 126:12298–12305Google Scholar
  242. 242.
    Liu JW, Lu Y (2004) Optimization of a Pb2 + -directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+. Chem Mater 16:3231–3238Google Scholar
  243. 243.
    Liu JW, Lu Y (2004) Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J Fluoresc 14:343–354Google Scholar
  244. 244.
    Liu JW, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76:1627–1632Google Scholar
  245. 245.
    Liu J, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677–12683Google Scholar
  246. 246.
    Liu JW, Lu Y (2006) Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Org Biomol Chem 4:3435–3441Google Scholar
  247. 247.
    Liu J, Lu Y (2007) Colorimetric Cu2 + detection with a ligation DNAzyme and nanopairticles. Chem Commun 46:4872–4874Google Scholar
  248. 248.
    Lee JH, Wang ZD, Liu JW, Lu Y (2008) Highly sensitive and selective colorimetric sensors for Uranyl (UO22 +): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226Google Scholar
  249. 249.
    Shen L, Chen Z, Li YH, He SL, Xie SB, Xu XD, Liang ZW, Meng X, Li Q, Zhu ZW, Li MX, Le XC, Shao YH (2008) Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Anal Chem 80:6323–6328Google Scholar
  250. 250.
    Wang ZD, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267Google Scholar
  251. 251.
    Wei H, Li BL, Li J, Dong SJ, Wang EK (2008) DNAzyme-based colorimetric sensing of lead (Pb(2 +)) using unmodified gold nanoparticle probes. Nanotechnology 19:095501Google Scholar
  252. 252.
    Zhao WA, Lam JCF, Chiuman W, Brook MA, Li YF (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small 4:810–816Google Scholar
  253. 253.
    Fu R, Li T, Park HG (2009) An ultrasensitive DNAzyme-based colorimetric strategy for nucleic acid detection. Chem Commun 39:5838–5840Google Scholar
  254. 254.
    Zhou WH, Zhu CL, Lu CH, Guo XC, Chen FR, Yang HH, Wang XR (2009) Amplified detection of protein cancer biomarkers using DNAzyme functionalized nanoprobes. Chem Commun 28:6845–6847Google Scholar
  255. 255.
    Fang ZY, Huang J, Lie PC, Xiao Z, Ouyang CY, Wu Q, Wu YX, Liu GD, Zeng LW (2010) Lateral flow nucleic acid biosensor for Cu2 + detection in aqueous solution with high sensitivity and selectivity. Chem Commun 46:9043–9045Google Scholar
  256. 256.
    Mazumdar D, Liu JW, Lu G, Zhou JZ, Lu Y (2010) Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun 46:1416–1418Google Scholar
  257. 257.
    Wang Y, Yang F, Yang XR (2010) Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Nanotechnology 21:205502Google Scholar
  258. 258.
    Yang XR, Xu J, Tang XM, Liu HX, Tian DB (2010) A novel electrochemical DNAzyme sensor for the amplified detection of Pb2 + ions. Chem Commun 46:3107–3109Google Scholar
  259. 259.
    Yin BC, Zuo P, Huo H, Zhong XH, Ye BC (2010) DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Anal Biochem 401:47–52Google Scholar
  260. 260.
    Kim JH, Han SH, Chung BH (2011) Improving Pb(2 +) detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles. Biosens Bioelectron 26:2125–2129Google Scholar
  261. 261.
    Liang JF, Chen ZB, Guo L, Li LD (2011) Electrochemical sensing of l-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites. Chem Commun 47:5476–5478Google Scholar
  262. 262.
    Lin DJ, Wu J, Yan F, Deng SY, Ju HX (2011) Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags. Anal Chem 83:5214–5221Google Scholar
  263. 263.
    Miao XM, Ling LS, Shuai XT (2011) Ultrasensitive detection of lead(II) with DNAzyme and gold nanoparticles probes by using a dynamic light scattering technique. Chem Commun 47:4192–4194Google Scholar
  264. 264.
    Wang C, Wu J, Zong C, Ju HX, Yan F (2011) Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification. Analyst 136:4295–4300Google Scholar
  265. 265.
    Wang HL, Ou LML, Suo YR, Yu HZ (2011) Computer-readable DNAzyme assay on disc for ppb-level lead detection. Anal Chem 83:1557–1563Google Scholar
  266. 266.
    Wang L, Jin Y, Deng J, Chen GZ (2011) Gold nanorods-based FRET assay for sensitive detection of Pb2 + using 8-17DNAzyme. Analyst 136:5169–5174Google Scholar
  267. 267.
    Wang YL, Irudayaraj J (2011) A SERS DNAzyme biosensor for lead ion detection. Chem Commun 47:4394–4396Google Scholar
  268. 268.
    Yuan YL, Gou XX, Yuan R, Chai YQ, Zhuo Y, Mao L, Gan XX (2011) Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosens Bioelectron 26:4236–4240Google Scholar
  269. 269.
    Jo H, Lee S, Min K, Ban C (2012) Detection of the strand exchange reaction using DNAzyme and Thermotoga maritima recombinase A. Anal Biochem 421:313–320Google Scholar
  270. 270.
    Li CL, Huang CC, Chen WH, Chiang CK, Chang HT (2012) Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood. Analyst 137:5222–5228Google Scholar
  271. 271.
    Liu QY, Wei L, Wang LS, Liang AH, Jiang ZL (2012) A label-free deoxyribozymes resonance rayleigh scattering assay for trace lead(II) based on nanogold catalysis of chloroauric acid-vitamin C particle reaction. Anal Lett 45:2737–2748Google Scholar
  272. 272.
    Malashikhina N, Pavlov V (2012) DNA-decorated nanoparticles as nanosensors for rapid detection of ascorbic acid. Biosens Bioelectron 33:241–246Google Scholar
  273. 273.
    Miao XM, Ling LS, Cheng D, Shuai XT (2012) A highly sensitive sensor for Cu2 + with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique. Analyst 137:3064–3069Google Scholar
  274. 274.
    Miao XM, Ling LS, Shuai XT (2012) Detection of Pb2 + at attomole levels by using dynamic light scattering and unmodified gold nanoparticles. Anal Biochem 421:582–586Google Scholar
  275. 275.
    Pelossof G, Tel-Vered R, Willner I (2012) Amplified surface plasmon resonance and electrochemical detection of Pb2 + ions using the Pb2 + -dependent DNAzyme and Hemin/G-Quadruplex as a label. Anal Chem 84:3703–3709Google Scholar
  276. 276.
    Zhou MY, Liu Y, Tu YF, Tao GH, Yan JL (2012) DNAzyme-based turn-on chemiluminescence assays in homogenous media. Biosens Bioelectron 35:489–492Google Scholar
  277. 277.
    Chen JH, Zhou XM, Zeng LW (2013) Enzyme-free strip biosensor for amplified detection of Pb2 + based on a catalytic DNA circuit. Chem Commun 49:984–986Google Scholar
  278. 278.
    Wen YQ, Li FBY, Dong XC, Zhang J, Xiong QH, Chen P (2013) The electrical detection of Lead ions using Gold-nanoparticle- and DNAzyme-functionalized graphene device. Adv Healthc Mater 2:271–274Google Scholar
  279. 279.
    Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030Google Scholar
  280. 280.
    Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261Google Scholar
  281. 281.
    Tack F, Noppe M, Van Dijck A, Dekeyzer N, Van Der Leede BJ, Bakker A, Wouters W, Janicot M, Brewster ME (2008) Delivery of a DNAzyme targeting c-myc to HT29 colon carcinoma cells using a gold nanoparticulate approach. Pharmazie 63:221–225Google Scholar
  282. 282.
    Yehl K, Joshi JR, Greene BL, Dyer RB, Nahta R, Salaita K (2012) Catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS Nano 6:9150–9157Google Scholar
  283. 283.
    Wu PW, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135:5254–5257. doi:10.1021/ja400150v Google Scholar
  284. 284.
    Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103Google Scholar
  285. 285.
    Zhao W, Chiuman W, Lam JCF, Brook MA, Li Y (2007) Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem Commun 36:3729–3731Google Scholar
  286. 286.
    Xiang Y, Lu Y (2013) An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter. Chem Commun 49:585–587Google Scholar
  287. 287.
    Li HX, Rothberg L (2005) Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal Chem 77:6229–6233Google Scholar
  288. 288.
    Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel F, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry and Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations