Recent Developments in Manufacturing Oligosaccharides with Prebiotic Functions

  • Zoltán Kovács
  • Eric Benjamins
  • Konrad Grau
  • Amad Ur Rehman
  • Mehrdad Ebrahimi
  • Peter Czermak
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 143)


The market for prebiotics is steadily growing. To satisfy this increasing worldwide demand, the introduction of effective bioprocessing methods and implementation strategies is required. In this chapter, we review recent developments in the manufacture of galactooligosaccharides (GOS) and fructooligosaccharides (FOS). These well-established oligosaccharides (OS) provide several health benefits and have excellent technological properties that make their use as food ingredients especially attractive. The biosyntheses of lactose-based GOS and sucrose-based FOS show similarities in terms of reaction mechanisms and product formation. Both GOS and FOS can be synthesized using whole cells or (partially) purified enzymes in immobilized or free forms. The biocatalysis results in a final product that consists of OS, unreacted disaccharides, and monosaccharides. This incomplete conversion poses a challenge to manufacturers because an enrichment of OS in this mixture adds value to the product. For removing digestible carbohydrates from OS, a variety of bioengineering techniques have been investigated, including downstream separation technologies, additional bioconversion steps applying enzymes, and selective fermentation strategies. This chapter summarizes the state-of-the-art manufacturing strategies and recent advances in bioprocessing technologies that can lead to new possibilities for manufacturing and purifying sucrose-based FOS and lactose-based GOS.

Graphical Abstract



We thank the Hessen State Ministry of Higher Education, Research and the Arts for the financial support within the Hessen Initiative for Scientific and Economic Excellence (LOEWE Program). The first author is grateful for the Marie Curie FP7 Integration Grant provided by the 7th European Union Framework Programme (PCIG11-GA-2012-322219).


  1. 1.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412. and Google Scholar
  2. 2.
    Hammes W, Weiss N, Holzapfel W (1992) The genera Lactobacillus and Carnobacterium, vol II., The ProcaryotesSpringer, BerlinGoogle Scholar
  3. 3.
    Van Loo J, Cummings J (1999) Br J Nutr 81:121–132Google Scholar
  4. 4.
    Cummings J, Roberfroid M (1997) Eur J Clin Nutr 51(7):417Google Scholar
  5. 5.
    Rumessen J, Gudmand-Hoyer E (1998) Am J Clin Nutr 68(2):357Google Scholar
  6. 6.
    Hopkins M, Cummings J, Macfarlane G (1998) J Appl Microbiol 85(2):381Google Scholar
  7. 7.
    Wang X, Gibson G (1993) J Appl Bact 75(4):373Google Scholar
  8. 8.
    Kleessen B, Sykura B, Zunft H, Blaut M (1997) Am J Clin Nutr 65:1397Google Scholar
  9. 9.
    Musatto S, Mancilha I (2007) Carbohydr Polym 68:587Google Scholar
  10. 10.
    Den Hond E, Geypens B, Ghoos Y (2000) Nutr Res 20(5):731Google Scholar
  11. 11.
    Gibson G, Wang X (1994) J Appl Microbiol 77:412Google Scholar
  12. 12.
    Igarashi M (1994) Bifidus 7:139Google Scholar
  13. 13.
    Schoterman H (2001) Galactooligosaccharides: properties and health aspects., Advanced dietary fibre technologyBlackwell Science, OxfordGoogle Scholar
  14. 14.
    Swennen K, Courtin C, Delcour J (2006) Crit Rev Food Sci Nutr 46:459Google Scholar
  15. 15.
    Sekine K, Ohta J (1995) Biol Pharmaceut Bull 18:148Google Scholar
  16. 16.
    Reddy B (1998) Br J Nutr 80:219Google Scholar
  17. 17.
    Franck A, Coussement P (1997) Food ingredients and analysis international 51Google Scholar
  18. 18.
    Kunz C, Rudloff S (1993) Acta Pädiatr 82:903Google Scholar
  19. 19.
    Boehm G, Stahl B (2003) Oligosaccharides, functional dairy, products edn. Woodhead Publishing Ltd. Cambridge UK, Cambridge UKGoogle Scholar
  20. 20.
    Moro G, Minoli I (2002) J Pediatr Gastroenterol Nutr 34:291Google Scholar
  21. 21.
    Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, Dehlin KE, Loibichler C, Urbanek R, Szépfalusiz (2004) Human milk–derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr Res 56(4):536–540 Google Scholar
  22. 22.
    EFSA (2010a) Consolidated list of Article 13 health claims of references received by EFSA-Part 3 (internet). Parma: Scientific Panel on Dietetic Products, Nutrition and Allergies Unit. URL
  23. 23.
    EFSA (2010b) Consolidated list of Article 13 health claims of references received by EFSA-Part 3 (internet). Parma: Scientific Panel on Dietetic Products, Nutrition and Allergies Unit. URL
  24. 24.
    Wallenfels K, Malhotra OP (1961) Adv Carbohydr Chem 16:239Google Scholar
  25. 25.
    Voragen AGJ (1998) Trends Food Sci Technol 8–9:328Google Scholar
  26. 26.
    Gibson GR, Roberfroid MB (1995) J Nutr 125:1401Google Scholar
  27. 27.
    Torres DPM, do Pilar M, Goncalves F, Teixeira JA, Rodrigues LR (2010) Compr Rev Food Sci Food Safety 9:438Google Scholar
  28. 28.
    Machadoa JJB, Coutinho JA, Macedo EA (2000) Fluid Phase Equilibria 173:121Google Scholar
  29. 29.
    Arakawa T, Timasheff SN (1982) Biochemistry 21(25):6536Google Scholar
  30. 30.
    Padilla B, Ruiz-Matute AI, Belloch C, Cardelle-Cobas A, Corzo N, Manzanares P (2012) J Agric Food Chem 60:5134Google Scholar
  31. 31.
    Martinez-Villaluenga C, Cardelle-Cobas A, Olano A, Corzo N, Villamiel M, Jimeno ML (2008) J Agric Food Chem 56:557Google Scholar
  32. 32.
    Vera C, Guerrero C, Conejeros R, Illanes A (2012) Enzym Microb Technol 50:188Google Scholar
  33. 33.
    Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2011) Process Biochem 46:245Google Scholar
  34. 34.
    Goulas A, Tzortzis G, Gibson GR (2007) Int Dairy J 17:648Google Scholar
  35. 35.
    Hsu CA, Lee SL, Chou CC (2007) J Agric Food Chem 55:2225Google Scholar
  36. 36.
    Joergensen F, Hansen OC, Stougaard P (2001) Appl Microbiol Biotechnol 57:647Google Scholar
  37. 37.
    Rabiu BA, Jay AJ, Gibson GR, Rastall RA (2001) Appl Environ Microbiol 67(6):2526Google Scholar
  38. 38.
    Hung MN, Lee BH (2002) Appl Microbiol Biotechnol 58:439Google Scholar
  39. 39.
    Roy D, Daoudi L, Azaola A (2002) J Indus Microbiol Biotechnol 29:281Google Scholar
  40. 40.
    Goulas T, Goulas A, Tzortzis G, Gibson GR (2009) Appl Microbiol Biotechnol 84:899Google Scholar
  41. 41.
    Osman A, Tzortzis G, Rastall RA, Charalampopoulosa D (2010) J Biotechnol 150:140Google Scholar
  42. 42.
    Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2011) J Agric Food Chem 59:3366Google Scholar
  43. 43.
    Kamerke C, Pattky M, Huhn C, Elling L (2012) J Mol Catal B Enzym 79:27Google Scholar
  44. 44.
    Mozaffar Z, Nakanishi K, Matsuno R, Kamikubo T (1984) Agric Biol Chem 48(12):3053Google Scholar
  45. 45.
    Boon MA, Janssen AEM, Van’t Riet K (2000) Enzym Microb Technol 26:271Google Scholar
  46. 46.
    Vetere A, Paoletti S (1996) FEBS Lett 399:203Google Scholar
  47. 47.
    Yanahira S, Kobayashi T, Suguri T, Nakakoshi M, Miura S, Ishikawa H, Nakajima I (1995) Biosci Biotechnol Biochem 59(6):1021Google Scholar
  48. 48.
    Das R, Sen D, Sarkar A, Bhattacharyya S, Bhattacharjee C (2011) Indus Eng Chem Res 50:806Google Scholar
  49. 49.
    Li W, Sun Y, Ye H, Zeng X (2010) Eur Food Res Technol 231:55Google Scholar
  50. 50.
    Li W, Xiang X, Tang S, Hu B, Tian L, Sun Y, Ye H, Zeng X (2009) J Agric Food Chem 57:3927Google Scholar
  51. 51.
    Mozaffar Z, Nakanishi K, Matsuno R (1985) J Food Sci 50(6):1602Google Scholar
  52. 52.
    Pruksasri S (2007) Production and separation of galacto-oligosaccharides from lactose by b-galactosidase immobilized on nanofiltration membranesGoogle Scholar
  53. 53.
    Usui T, Kubota S, Ohi H (1993) Carbohydr Res 244(2):315Google Scholar
  54. 54.
    Onishi N, Yamashiro A, Yokozeki K (1995) Appl Environ Microbiol 11:4022Google Scholar
  55. 55.
    Rodriguez-Colinas B, de Abreu MA, Fernandez-Arrojo L, de Beer R, Poveda A, Jimenez-Barbero J, Haltrich D, Olmo AOB, Fernandez-Lobato M, Plou FJ (2011) J Agric Food Chem 59:10477Google Scholar
  56. 56.
    Montilla A, Corzo N, Lano A (2012) Milchwissenschaft 67(1):14Google Scholar
  57. 57.
    Burvall A, Asp NG, Dahlqvist A (1979) Food Chem 4(4):243Google Scholar
  58. 58.
    Adamczak M, Charubin D, Bednarski W (2009) Chem Pap 63(2):111Google Scholar
  59. 59.
    Chockchaisawasdee S, Athanasopoulos VI, Niranjan K, Rastall RA (2005) Biotechnol Bioeng 89(4):434Google Scholar
  60. 60.
    cová KP, Curda L, sún DM, Dryáková A, Diblíková L (2010) J Food Eng 99(4):479Google Scholar
  61. 61.
    Iwasaki KI, Nakajimab M, Nakao SC (1996) Process Biochem 31(1):69Google Scholar
  62. 62.
    Reuter S, Nygaard AR, Zimmermann W (1999) Enzym Microb Technol 25:509Google Scholar
  63. 63.
    Bankova E, Bakalova N, Petrova S, Kolev D (2006) Biotechnol Biotechnol Equip 20(3):114Google Scholar
  64. 64.
    Toba T, Yokota A, Adachi S (1985) Food Chem 16(2):147Google Scholar
  65. 65.
    Vera C, Guerrero C, Illanes A (2011) Carbohydr Res 346:745Google Scholar
  66. 66.
    Chen C, Hsu C, Chiang B (2002) Process Biochem 38:801Google Scholar
  67. 67.
    Cheng CC, Yu MC, Cheng TC, Sheu DC, Duan KJ, Tai WL (2006) Biotechnol Lett 28:793Google Scholar
  68. 68.
    Sakai T, Tsuji H, Shibata S, Hayakawa K, Matsumoto K (2008) J Gen Appl Microbiol 54:285Google Scholar
  69. 69.
    Coulier L, Timmermans J, Bas R, Van Den Dool R, Haaksman I, Klarenbeek B, Slaghek T, Van Dongen W (2009) J Agric Food Chem 57(18):8488. doi:  10.1021/jf902549e. URL Google Scholar
  70. 70.
    US Food and Drug Administration. Agency response letter gras notice no. grn 000236Google Scholar
  71. 71.
    US Food and Drug Administration. Agency response letter gras notice no. grn 000334Google Scholar
  72. 72.
    US Food and Drug Administration. Agency response letter gras notice no. grn 000286Google Scholar
  73. 73.
    Tzortzis G, Vulevic J (2009) Galacto-oligosaccharide prebiotics. Springer, New York, pp 207–244 (Prebiotics and Probiotics - Science and Technology)Google Scholar
  74. 74.
    Silk DBA, Davis A, Vulevic J, Tzortzis G, Gibson GR (2009) Aliment Pharmacol Ther 29:508Google Scholar
  75. 75.
    Mabel M, Sangeetha P, Platel K, Srinivasan K, Prapulla S (2008) Carbohydr Res 343(1):56. doi:  10.1016/j.carres.2007.10.012. URL
  76. 76.
    Khan R (1993) Low-calorie foods and food ingredients. Springer, LondonGoogle Scholar
  77. 77.
    Crittenden R, Playne M (1996) Trends Food Sci Technol 7(11):353. doi:  10.1016/S0924-2244(96)10038-8. URL
  78. 78.
    Martinez-Ferez A, Guadix A, Guadix EM (2006) J Membr Sci 276(1–2):23. doi:  10.1016/j.memsci.2005.09.027. URL
  79. 79.
    Shiomi N (1978) J Facul Agric 58:4Google Scholar
  80. 80.
    Shiomi N, Yamada J, Izawa M (1976) Agric Biol Chem 40(3):567Google Scholar
  81. 81.
    Kurtoglu G, Yildiz S (2011) Gazi Univ J Sci 24(4):877Google Scholar
  82. 82.
    Monsan P, Paul F (1995) FEMS Microbiol Rev 16(2–3):187. doi: 10.1111/j.1574-6976.1995.tb00165.x Google Scholar
  83. 83.
    Nishizawa K, Nakajima M, Nabetani H (2001-02-01) Food Sci Technol Res 7(1):39. doi:  10.3136/fstr.7.39
  84. 84.
    Alvarado M, Maugeri F (2007) J Biotechnol 131:S91–S92Google Scholar
  85. 85.
    Duan K, Chen J, Sheu D (1994) Enzym Microb Technol 16(5):334Google Scholar
  86. 86.
    Jung K, Yun J, Kang K, Lim J, Lee J (1989) Enzyme Microb Technol 11:491Google Scholar
  87. 87.
    Kilian S, Sutherland F, Meyer P, Preez J (1996) Biotechnol Lett 18:975. doi:  10.1007/BF00154633. URL
  88. 88.
    Park M, Lim J, Kim J, Park S, Kim S (2005) Biotechnol Lett 27:127. doi:  10.1007/s10529-004-7339-x. URL
  89. 89.
    Kim BW, Choi JW, Yun JW (1998) Biotechnol Lett 20(11):1031. URL Google Scholar
  90. 90.
    Ghazi I, Fernandez-Arrojo L, Gomez De Segura A, Alcalde M, Plou FJ, Ballesteros A (2006) J Agric Food Chem 54(8):2964. doi: 10.1021/jf053023b Google Scholar
  91. 91.
    Smaali I, Jazzar S, Soussi A, Muzard M, Aubry N, Marzouki MN (2012) Biotechnol Bioprocess Eng 17:385. doi: 10.1007/s12257-011-0388-9 Google Scholar
  92. 92.
    Surin S, Seesuriyachan P, Thakeow P, Phimolsiripol Y (2012) J Appl Sci 12(11):1118. doi: 10.3923/jas.2012.1118.1123 Google Scholar
  93. 93.
    Lateef A, KANA EBG (2012) Roman Biotechnol Lett 17(3):7309. URL
  94. 94.
    Sangeetha P, Ramesh M, Prapulla S (2004) Appl Microbiol Biotechnol 65:530. doi:  10.1007/s00253-004-1618-2. URL
  95. 95.
    Fernandez RC, Maresma BG, Juarez A, Martinez J (2004) J Chem Technol Biotechnol 79:268. doi:  10.1002/jctb.967. URL
  96. 96.
    Sanchez OF, Rodriguez AM, Silva E, Caicedo L (2010) Food Bioprocess Technol 3(4):662. doi: 10.1007/s11947-008-0121-7 Google Scholar
  97. 97.
    Park YK, Almeida MM (1991) World J Microbiol Biotechnol 7(3):331. doi: 10.1007/BF00329399 Google Scholar
  98. 98.
    Mabel MJ, Sangeetha PT, Platel K, Srinivasanb K, Prapulla SG (2008) Carbohydr Res 343(1):55. doi:  10.1016/j.carres.2007.10.012. URL
  99. 99.
    Lateef A, Oloke JK, Prapulla SG (2007) Turkish J Biol 31(3):147Google Scholar
  100. 100.
    Park JP, Oh TK, Yun JW (2001) Process Biochem 37(5):471. doi:  10.1016/S0032-9592(01)00237-0. URL
  101. 101.
    Patel V, Saunders G, Bucke C (1994) Biotechnol Lett 16(11):1139Google Scholar
  102. 102.
    Barthomeuf C, Pourrat H (1995) Biotechnol Lett 17(9):914Google Scholar
  103. 103.
    Kuhn RC, Filho FM, New Biotechnology (2010) 27(6):862. doi:  10.1016/j.nbt.2010.05.008. URL
  104. 104.
    Hang YD, Woodams EE (1995) Biotechnol Lett 17(7):741Google Scholar
  105. 105.
    Hang YD, Woodams EE (1996) LWT Food Sci Technol 29(5–6):578. doi:  10.1006/fstl.1996.0089. URL
  106. 106.
    Nemukula A, Mutanda T, Wilhelmi BS, Whiteley CG (2009) Bioresour Technol 100(6):2040. doi:  10.1016/j.biortech.2008.10.022. URL
  107. 107.
    Tanriseven A, Aslan Y (2005) Enzyme Microb Technol 36(4):550. doi:  10.1016/j.enzmictec.2004.12.001. URL
  108. 108.
    Ghazi I, Arrojo LF, Arellano HG, Ferrer M, Ballesteros A, Plou FJ (2007) J Biotechnol 128(1):204. doi:  10.1016/j.jbiotec.2006.09.017. URL
  109. 109.
    Tanriseven A, Gokmen F (1999) Biotechnol Tech 13(3):207Google Scholar
  110. 110.
    Nemukula A, Mutanda T, Wilhelmi B, Whiteley C (2009) Bioresour Technol 100(6):2040. doi: 10.1016/j.biortech.2008.10.022 Google Scholar
  111. 111.
    Ghazi I, Fernandez-Arrojo L, Garcia-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2007) J Biotechnol 128(1):204. doi: 10.1016/j.jbiotec.2006.09.017 Google Scholar
  112. 112.
    Yun J, Jung K, Oh J, Lee J (1990) Appl Biochem Biotechnol 24–25:299. doi:  10.1007/BF02920254. URL
  113. 113.
    Chiang CJ, Lee WC, Sheu DC, Duan KJ (1997) Biotechnol Prog 13(5):577. doi:  10.1021/bp970067z. URL
  114. 114.
    Hayashi S, Tubouchi M, Takasaki Y, Imada K (1994) Biotechnol Lett 16:227. doi:  10.1007/BF00134616. URL
  115. 115.
    Tanriseven A, Aslan Y (2005) Enzym Microb Technol 36(4):550. doi: 10.1016/j.enzmictec.2004.12.001 Google Scholar
  116. 116.
    Hayashi S, Kinoshita J, Nonoguchi M, Takasaki Y, Imada K (1991) Biotechnol Lett 13:395. doi:  10.1007/BF01030989. URL
  117. 117.
    Csanádi Z, Sisak C (2008) Hung J Indus Chem 36(1–2):23Google Scholar
  118. 118.
  119. 119.
    Panesar PS, Panesar R, Singh RS, Kennedy JF, Kumar H (2006) J Chem Technol Biotechnol 81(4):530. doi:  10.1002/jctb.1453. URL
  120. 120.
    van Hijum S, van Geel-Schutten G, Rahaoui H, van der Maarel M, Dijkhuizen L (2002) Appl Environ Microbiol 68(9):4390. doi:  10.1128/AEM.68.9.4390-4398.2002 Google Scholar
  121. 121.
    Maugeri F, Hernalsteens S (2007) J Mol Catal B Enzym 49(1–4):43. doi:  10.1016/j.molcatb.2007.08.001. URL
  122. 122.
    Hidaka H, Hirayama M, Sumi N (1988) Agric Biol Chem 52:1181. URL
  123. 123.
    Fungsin B, Saman P, Meeploy M, Chatanon L, Srichuai A, Sukcharurn J, Artjariyasripong S (2010) In: The 8th international symposium on biocontrol and biotechnology. PattayaGoogle Scholar
  124. 124.
    Sheu DC, Duan KJ, Cheng CY, Bi JL, Chen JY (2002) Biotechnol Prog 18:1282. doi:  10.1021/bp020081y. URL
  125. 125.
    Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA (2009) J Mol Catal B Enzym 59:76Google Scholar
  126. 126.
    Cruz R, Cruz VD, Belini MZ, Belote JG, Vieira CR (1998) Bioresour Technol 65(1–2):139. doi:  10.1016/S0960-8524(98)00005-4. URL
  127. 127.
    Aziani G, Terenzi H, Jorge J, Guimaraes L (2012) Food Technol Biotechnol 50(1):40Google Scholar
  128. 128.
    Antosova M, Polakovie M, Slovinska M, Madlova A, Illeova V, Bales V (2002) Chem Pap 56(6):394Google Scholar
  129. 129.
    Dominguez A, Nobre C, Rodrigues LR, Peres A, Torres D, Rocha I, Lima N, Teixeira J (2012) Carbohydr Polym 89(4):1174. doi: Google Scholar
  130. 130.
    Yun JW, Jung KH, Oh JW, Lee JH (1990) Appl Biochem Biotechnol 24/25:299Google Scholar
  131. 131.
    Shin H, Baig S, Lee S, Suh D, Kwon S, Lim Y, Lee J (2004) Bioresour Technol 93(1):59. doi: 10.1016/j.biortech.2003.10.008 Google Scholar
  132. 132.
    Prata M, Mussatto S, Rodrigues L, Teixeira J (2010) Biotechnol Lett 32(6):837. doi: 10.1007/s10529-010-0231-y Google Scholar
  133. 133.
    Mussatto S, Prata M, Rodrigues L, Teixeira J (2012) Eur Food Res Technol 235:13. doi: 10.1007/s00217-012-1728-5 Google Scholar
  134. 134.
    Sangeetha P, Ramesh M, Prapulla S (2005) Trends Food Sci Technol 16(10):442. doi:  10.1016/j.tifs.2005.05.003. URL
  135. 135.
    Chien CS, Lee WC, Lin TJ (2001) Enzym Microb Technol 29(4–5):252. doi:  10.1016/S0141-0229(01)00384-2. URL
  136. 136.
    Prapulla SG, Subhaprada V, Karanth NG, (2000) Microbial production of oligosaccharides : a review. Advance in Applied Microbiology vol. 47. Academic Press, pp 299–343. doi:  10.1016/S0065-2164(00)47008-5. URL
  137. 137.
    Yun JW (1996) Enzym Microb Technol 19(2):107. doi: 10.1016/0141-0229(95)00188-3 Google Scholar
  138. 138.
    Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2010) Food Chem 121(2):307. doi: 10.1016/j.foodchem.2009.12.063 Google Scholar
  139. 139.
    Shiomi N, Onodera S, Chatterton NJ, Harrison PA (1991) Agric Biol Chem 55(5):1427Google Scholar
  140. 140.
    Silva MTMV, Gomes P, Rodrigues A (2012) In: Inamuddin D, Luqman M (eds) Ion exchange technology II. Springer, The Netherlands, pp 109–135Google Scholar
  141. 141.
    Chilamkurthi S, Willemsen JH, van der Wielen LA, Poiesz E, Ottens M (2012) J Chromatogr A 1239(0):22. doi:  10.1016/j.chroma.2012.03.042. URL
  142. 142.
    Vaňková K, Polakovič M (2010) Process Biochem 45(8):1325. doi: 10.1016/j.procbio.2010.04.025 Google Scholar
  143. 143.
  144. 144.
    Takahashi Y, Goto S (1994) Sep Sci Technol 29(10):1311. doi:  10.1080/01496399408006942. URL
  145. 145.
    Vaňková K, Polakovič M (2012) Chem Eng Technol 35(1):161. doi: 10.1002/ceat.201100254 Google Scholar
  146. 146.
    da Silva EAB, de Souza AAU, de Souza SGU, Rodrigues AE (2006) Chem Eng J 118(3):167. doi:  10.1016/j.cej.2006.02.007. URL
  147. 147.
    Nicoud RM 2000) In: Ahuja S (ed) Handbook of bioseparations, separation science and technology, vol. 2. Academic Press, pp 475–509. doi:  10.1016/S0149-6395(00)80060-4. URL
  148. 148.
    Vanneste J, Ron SD, Vandecruys S, Soare SA, Darvishmanesh S, der Bruggen BV (2011) Sep Purif Technol 80(3):600. doi:  10.1016/j.seppur.2011.06.016. URL
  149. 149.
    Vaňková K, Onderková Z, Antosová M, Polakovič M (2008) Chem Pap 62:375. doi:  10.2478/s11696-008-0034-y. URL
  150. 150.
    Hernández O, Ruiz-Matute AI, Olano A, Moreno FJ, Sanz ML (2009) Int Dairy J 19(9):531. doi:  10.1016/j.idairyj.2009.03.002. URL
  151. 151.
    Kuhn RC, Filho FM (2010) New Biotechnol 27(6):862. Papers from Symbiosis - The 14th European congress on biotechnology (Part 1), Barcelona, Sept 2009. doi:  10.1016/j.nbt.2010.05.008. URL
  152. 152.
    Nobre C, Teixeira J, Rodrigues L (2012) New Biotechnol 29(3):395. doi: 10.1016/j.nbt.2011.11.006 Google Scholar
  153. 153.
    Chinn D, King CJ (1999) Indus Eng Chem Res 38(10):3738. doi:  10.1021/ie990286k. URL
  154. 154.
    Sen D, Gosling A, Stevens GW, Bhattacharya PK, Barber AR, Kentish SE, Bhattacharjee C, Gras SL (2011) Food Chem 128(3):773. doi:  10.1016/j.foodchem.2011.03.076. URL
  155. 155.
    Nés FM, Fornari T, Stateva RP, Olano A, nez EI (2009) J Supercrit Fluids 49(1):16. doi:  10.1016/j.supflu.2008.11.014. URL
  156. 156.
    Nés FM, Olano A, Reglero G, nez EI, Fornari T (2009) Sep Purif Technol 66(2):383. doi:  10.1016/j.seppur.2008.12.006. URL
  157. 157.
    n és FM, Fornari T, Olano A, n ez EI (2010) J Supercrit Fluids 53(1–3):25. Selected papers from the 9th international symposium on supercritical fluids (ISSF 2009) - new trends in supercritical fluids: energy, materials, processing, Arcachon, France, May 18-20 2009. doi:  10.1016/j.supflu.2010.02.011. URL
  158. 158.
    Yun JW, Lee MG, Song SK (1994) J Ferment Bioeng 77(2):159. doi: 10.1016/0922-338X(94)90316-6 Google Scholar
  159. 159.
    Sheu D, Lio P, Chen S, Lin C, Duan K (2001) Biotechnol Lett 23:1499. doi:  10.1023/A:1011689531625. URL
  160. 160.
    Sheu DC, Duan KJ, Cheng CY, Bi JL, Chen JY (2002) Biotechnol Prog 18(6):1282. doi:  10.1021/bp020081y. URL
  161. 161.
    Cheng CC, Yu MC, Cheng TC, Sheu DC, Duan KJ, Tai WL (2006) Biotechnol Lett 28:793. doi:  10.1007/s10529-006-9002-1. URL
  162. 162.
    Splechtna B, Petzelbauer I, Baminger U, Haltrich D, Kulbe KD, Nidetzky B (2001) Enzym Microb Technol 29(6-7):434. doi:  10.1016/S0141-0229(01)00412-4. URL
  163. 163.
    Oda Y, Ouchi K (1991) Enzym Microb Technol 13(6):495. doi: 10.1016/0141-0229(91)90008-X Google Scholar
  164. 164.
    Crittenden R, Playne M (2002) Appl Microbiol Biotechnol 58:297. doi:  10.1007/s00253-001-0886-3. URL
  165. 165.
    Li Z, Xiao M, Lu L, Li Y (2008) Process Biochem 43(8):896. doi:  10.1016/j.procbio.2008.04.016. URL
  166. 166.
    Pinelo M, Jonsson G, Meyer AS (2009) Sep Purif Technol 70(1):1. doi:  10.1016/j.seppur.2009.08.010. URL
  167. 167.
    Grandison A, Goulas A, Rastall R, Songklanakarin (2002) J Sci Technol 24(Supplement):915. URL
  168. 168.
    Kuhn RC, Palacio L, Prádanos P, Hernández A, Filho FM (2011) Desalin Water Treat 27(1–3):18. doi: 10.5004/dwt.2011.2038 Google Scholar
  169. 169.
    Li W, Li J, Chen T, Chen C (2004) J Membr Sci 245(1–2):123. doi: 10.1016/j.memsci.2004.07.021 Google Scholar
  170. 170.
    Goulas AK, Kapasakalidis PG, Sinclair HR, Rastall RA, Grandison AS (2002) J Membr Sci 209(1):321. doi:  10.1016/S0376-7388(02)00362-9. URL Google Scholar
  171. 171.
    Feng Y, Chang X, Wang W, Ma R (2009) J Taiwan Inst Chem Eng 40(3):326. Festschrift Issue In honor of Professor Yi Hua Ma. doi:  10.1016/j.jtice.2008.12.003. URL
  172. 172.
    Botelho-Cunha VA, Mateus M, Petrus JC, de Pinho MN (2010) Biochem Eng J 50(1–2):29. doi:  10.1016/j.bej.2010.03.001. URL
  173. 173.
    Nakao S, Kimura S (1982) J Chem Eng Japan 15(2):200Google Scholar
  174. 174.
    Kovács Z, Samhaber W (2008) Membrántechnika 12(2):22Google Scholar
  175. 175.
    Kuhn R, Filho FM, Silva V, Palacio L, Hernández A, Prádanos P (2010) J Membr Sci 365:356Google Scholar
  176. 176.
    Lightfoot EN (2005) Sep Sci Technol 40(4):739. doi:  10.1081/SS-200047994. URL
  177. 177.
    Siew WE, Livingston AG, Ates C, Merschaert A (2013) Sep Purif Technol 102(0):1. doi:  10.1016/j.seppur.2012.09.017. URL
  178. 178.
    Nishizawa K, Nakajima M, Nabetani H (2000) Biotechnol Bioeng 68(1):92Google Scholar
  179. 179.
    Sen D, Sarkar A, Gosling A, Gras SL, Stevens GW, Kentish SE, Bhattacharya P, Barber AR, Bhattacharjee C (2011) J Membr Sci 378(1–2):471. Membranes for a Sustainable Future Section. doi:  10.1016/j.memsci.2011.05.032. URL Google Scholar
  180. 180.
  181. 181.
    Jochems P, Satyawali Y, Roy SV, Doyen W, Diels L, Dejonghe W, Enzym Microb Technol 49(6–7):580 (2011). Special Issue on Papers presented at the 14th international biotechnology symposium and exhibition (IBS2010). doi:  10.1016/j.enzmictec.2011.06.010. URL
  182. 182.
    Güleç HA (2013) Colloids Surf B Biointerfaces 104(0):83. doi:  10.1016/j.colsurfb.2012.11.039. URL
  183. 183.
    Ulbricht M, Papra A (1997) Enzym Microb Technol 20(1):61Google Scholar
  184. 184.
    Engel L, Ebrahimi M, Czermak P (2008) Desalination 224(1–3):46. Issues 1 and 2: 11th Aachener Membran Kolloquium, 28-29 March 2007, Aachen, Issue 3: Aqua 2006, 2nd international conference on water science and technology - integrated management of water resources, November 2006, Athens. doi:  10.1016/j.desal.2007.04.078. URL
  185. 185.
    Engel L, Schneider P, Ebrahimi M, Czermak P (2007) Open Food Sci J 1:17Google Scholar
  186. 186.
    Ebrahimi M, Engel L, Peter S, Grau K, Czermak P (2006) Desalination 200(1–3):509. Euromembrane 2006. doi:  10.1016/j.desal.2006.03.415. URL
  187. 187.
    Mignard D, Glass D (2001) J Membr Sci 186(1):133. doi: 10.1016/S0376-7388(00)00661-X Google Scholar
  188. 188.
    Prádanos P, Hernández A, Calvo J, Tejerina F (1996) J Membr Sci 114(1):115. doi: 10.1016/0376-7388(95)00324-X Google Scholar
  189. 189.
    Meireles M, Aimar P, Sanchez V (1991) Biotechnol Bioeng 38:528Google Scholar
  190. 190.
    van Reis R, Goodrich EM, Yson CL, Frautschy LN, Whiteley R, Zydney AL (1997) J Membr Sci 130(1–2):123 10.1016/S0376-7388(97)00012-4Google Scholar
  191. 191.
    Bacchin P, Aimar P, Field R (2006) J Membr Sci 281(1–2):42 10.1016/j.memsci.2006.04.014Google Scholar
  192. 192.
    Kim KJ, Sun P, Chen V, Wiley DE, Fane AG (1993) J Membr Sci 80(1):241. doi: 10.1016/0376-7388(93)85148-P Google Scholar
  193. 193.
    Field R, Hughes D, Cui Z, Tirlapur U (2008) Desalination 227(1–3):132. doi: 10.1016/j.desal.2007.08.004 Google Scholar
  194. 194.
    Giorno L, Drioli E (2000) Trends Biotechnol 18(8):339. doi:  10.1016/S0167-7799(00)01472-4. URL
  195. 195.
    Rios G, Belleville M, Paolucci D, Sanchez J (2004) J Membr Sci 242(1–2):189. Membrane Engineering Special Issue. doi:  10.1016/j.memsci.2003.06.004. URL
  196. 196.
    Gonzalez R, Ebrahimi M, Czermak P (2009) Open Food Sci J 3:1. doi: 10.2174/1874256400903010001 Google Scholar
  197. 197.
    Czermak P, Ebrahimi M, Kandzia S, Klein K, Sawatzki G (2002) Chemie Ingenieur Technik 74(5):645. doi:  10.1002/1522-2640(200205)74:5<645::AID-CITE645>3.0.CO;2-W. URL<645::AID-CITE645>3.0.CO;2-W
  198. 198.
    Ebrahimi M, Gonzalez R (2006) Czermak P Desalination 200(1–3):686. Euromembrane 2006. doi:  10.1016/j.desal.2006.03.468. URL
  199. 199.
    Czermak P, Ebrahimi M, Grau K, Netz S, Sawatzki G, Pfromm P (2004) J Membr Sci 232(8):85Google Scholar
  200. 200.
    Foda MI, Lopez-Leiva M (2000) Process Biochem 35(6):581. doi: 10.1016/S0032-9592(99)00108-9 Google Scholar
  201. 201.
    Pocedičová K, Čurda L, Mišún D, Dryáková A, Diblíková L (2010) J Food Eng 99(4):479. doi: 10.1016/j.jfoodeng.2010.02.001 Google Scholar
  202. 202.
    Maria G (2012) Comput Chem Eng 36:325. doi: 10.1016/j.compchemeng.2011.06.006 Google Scholar
  203. 203.
    Bélafi-Bakó K, Eszterle M, Kiss K, Nemestóthy N, Gubicza L (2007) J Food Eng 78(2):438. doi:  10.1016/j.jfoodeng.2005.10.012. URL
  204. 204.
    Olano-Martin E, Mountzouris K, Gibson G, Rastall R (2001) J Food Sci 66(7):966. doi:  10.1111/j.1365-2621.2001.tb08220.x. URL
  205. 205.
    Petzelbauer I, Splechtna B, Nidetzky B (2002) Biotechnol Bioeng 77(4):394. doi:  10.1002/bit.10106. URL
  206. 206.
    Das R, Sen D, Sarkar A, Bhattacharyya S, Bhattacharjee C (2011) Indus Eng Chem Res 50(2):806. doi:  10.1021/ie1016333. URL
  207. 207.
    Avalakki UK, Maheswaran P Saravanan R (2011) Process for production of galactooligosaccharides (gos)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zoltán Kovács
    • 1
    • 2
  • Eric Benjamins
    • 3
  • Konrad Grau
    • 1
  • Amad Ur Rehman
    • 1
  • Mehrdad Ebrahimi
    • 1
  • Peter Czermak
    • 1
    • 4
    • 5
  1. 1.Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGiessenGermany
  2. 2.Department of Food EngineeringCorvinus University of BudapestBudapestHungary
  3. 3.FrieslandCampinaAmersfoortThe Netherlands
  4. 4.Department of Chemical EngineeringKansas State UniversityManhattanUSA
  5. 5.Faculty of Biology and ChemistryJustus Liebig UniversityGiessenGermany

Personalised recommendations