Food and Feed Enzymes

  • Marco Alexander Fraatz
  • Martin Rühl
  • Holger Zorn
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 143)


Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.

Graphical Abstract


Biotechnology Enzyme Feed Food Phytase 



Association of Manufacturers and Formulators of Enzyme Products


Bacterial cell wall hydrolase


2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole




British Committee on Toxicology




European Commission or Enzyme Commission


European Food Safety Authority


Genetically modified


Joint FAO/WHO Expert Committee on Food Additives




EU Scientific Committee on Food


Staggered extension process


Trans fatty acid



This work was supported by the excellence initiative of the Hessian Ministry of Science and Art, which provides a generous grant for the Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz (LOEWE) research focus of insect biotechnology.


  1. 1. (2013) The epic of Gilgamesh: Tablet II. Accessed 18 Mar 2013
  2. 2.
    van Leewenhoeck A (1676) Observations, communicated to the publisher by Mr. Antony van Leewenhoeck, in a Dutch letter of the 9th of Octob. 1676. Here english’d: concerning little animals by him observed in rain-well-sea. and snow water; as also in water wherein pepper had lain infused. Philos Trans R Soc London 12:821–831. doi:  10.1098/rstl.1677.0003
  3. 3.
    Kirchhoff GS (1815) Ueber die Zuckerbildung beim Malzen des Getreides, und beim Bebrühen seines Mehls mit kochendem Wasser. Journal für Chemie und Physik 14:389–398Google Scholar
  4. 4.
    Leuchs EF (1831) Ueber die Verzuckerung des Stärkemehls durch Speichel. Archiv für die gesammte Naturlehre 21:105–107Google Scholar
  5. 5.
    Payen A, Persoz J-F (1833) Mémoire sur la Diastase, les principaux Produits de ses Réactions, et leurs applicatíons aux arts industriels. Annal Chim Phys 53:73–92Google Scholar
  6. 6.
    Duclaux É (1899) Traité de microbiologie. Masson and Co., ParisGoogle Scholar
  7. 7.
    Berzelius JJ (1836) Quelques Idées sur une nouvelle Force agissant dans les Combinaisons des Corps Organiques. Annal Chim Phys 61:146–151Google Scholar
  8. 8.
    Pasteur ML (1857) Mémoire sur la fermentation appelée lactique. Comptes rendus hebdomadaires des séances de l’Académie des sciences 45:913–916Google Scholar
  9. 9.
    Kühne W (1877) Ueber das Verhalten verschiedener organisirter und sog. ungeformter Fermente. Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg 1:190–193Google Scholar
  10. 10. (2013) The Nobel Prize in chemistry 1909. Accessed 18 Mar 2013
  11. 11.
    Takamine J (1894) Process of making diastatic enzyme. United States Patent Application US 525823Google Scholar
  12. 12. (2013) The Nobel Prize in chemistry 1902. Accessed 18 Mar 2013
  13. 13.
    Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993CrossRefGoogle Scholar
  14. 14.
    Buchner E (1897) Alkoholische Gährung ohne Hefezellen. Ber Dtsch Chem Ges 30:117–124CrossRefGoogle Scholar
  15. 15. (2013) The Nobel Prize in chemistry 1907. Accessed 18 Mar 2013
  16. 16.
    Henri V (1903) Lois générales de l’action des diastases. A. Hermann, ParisGoogle Scholar
  17. 17.
    Menten L, Michaelis MI (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369Google Scholar
  18. 18.
    Johnson KA, Goody RS (2011) The original Michaelis constant: Translation of the 1913 Michaelis–Menten paper. Biochemistry 50:8264–8269. doi: 10.1021/bi201284u CrossRefGoogle Scholar
  19. 19. (2013) The Nobel Prize in physiology or medicine 1945. Accessed 18 Mar 2013
  20. 20.
    Sumner JB (1926) The isolation and crystallization of the enzyme urease. J Biol Chem 69:435–441Google Scholar
  21. 21. (2013) The Nobel Prize in chemistry 1946. Accessed 18 Mar 2013
  22. 22.
    Schellmann JA, Schellman CG (1997) Kaj Ulrik Linderstrøm-Lang (1896–1959). Protein Sci 6:1092–1100. doi: 10.1002/pro.5560060516 CrossRefGoogle Scholar
  23. 23. (2013) The Nobel Prize in chemistry 1929. Accessed 18 Mar 2013
  24. 24. (2013) The Nobel Prize in physiology or medicine 1978. Accessed 18 Mar 2013
  25. 25.
    Novozymes (2013) Novozymes. Accessed 21 Mar 2013
  26. 26.
    Neet KE, Koshland DE Jr (1966) The conversion of serine at the active site of subtilisin to cysteine: a “chemical mutation”. Proc Natl Acad Sci U S A 56:1606–1611CrossRefGoogle Scholar
  27. 27.
    DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol 10:324–330. doi: 10.1016/S0958-1669(99)80059-7 CrossRefGoogle Scholar
  28. 28.
    Arnold FH, Volkov AA (1999) Directed evolution of biocatalysts. Curr Opin Chem Biol 3:54–59. doi: 10.1016/S1367-5931(99)80010-6 CrossRefGoogle Scholar
  29. 29.
    Kotzia GA, Platis D, Axarli IA et al (2012) Biocatalysis, enzyme engineering and biotechnology. In: Simpson BK, Nollet LML, Toldrá F et al (eds) Food biochemistry and food processing, 2nd edn. Wiley-Blackwell, OxfordGoogle Scholar
  30. 30.
    Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516. doi: 10.1038/nrmicro1161 CrossRefGoogle Scholar
  31. 31.
    Novozymes (2012) The Novozymes Report 2011. Accessed 5 Sep 2012
  32. 32.
  33. 33.
    DSM (2013) DSM. Accessed 21 Mar 2013
  34. 34.
    DuPont (2013) DuPont. Accessed 21 Mar 2013
  35. 35.
    Henkel (2013) Home—Henkel. Accessed 21 Mar 2013
  36. 36.
    Spök A, Proksch M (2012) Lebensmittelenzyme in der EU, 3rd edn. Bundesministerium für Gesundheit, WienGoogle Scholar
  37. 37.
    Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351. doi: 10.1016/S0958-1669(02)00328-2 CrossRefGoogle Scholar
  38. 38.
    Sanchez S, Demain AL (2011) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev 15:224–230. doi: 10.1021/op100302x CrossRefGoogle Scholar
  39. 39.
    Whitehurst RJ, van Oort M (2009) Enzymes in food technology, 2nd edn. Blackwell Publishing Ltd, Oxford. doi: 10.1002/9781444309935
  40. 40.
    Bedford MR, Partridge GG (2010) Enzymes in farm animal nutrition. CABI, WallingfordCrossRefGoogle Scholar
  41. 41.
    Son J-H, Ravindran V (2011) Feed enzyme technology: present status and future developments. Recent Pat Food Nutr Agric 3:102–109. doi: 10.2174/2212798411103020102 CrossRefGoogle Scholar
  42. 42.
    Guzmán-Maldonado H, Paredes-López O, Biliaderis CG (1995) Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutr 35:373–403. doi: 10.1080/10408399509527706 CrossRefGoogle Scholar
  43. 43.
    Sivaramakrishnan S, Gangadharan D, Nampoothiri KM et al (2006) α-Amylases from microbial sources—an overview on recent developments. Food Technol Biotech 44:173–184Google Scholar
  44. 44.
    Akoh CC, Chang S-W, Lee G-C, Shaw J-F (2008) Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce. J Agric Food Chem 56:10445–10451. doi: 10.1021/jf801928e CrossRefGoogle Scholar
  45. 45.
    Kelly RM, Dijkhuizen L, Leemhuis H (2009) Starch and α-glucan acting enzymes, modulating their properties by directed evolution. Bioresour Technol 140:184–193. doi: 10.1016/j.jbiotec.2009.01.020 Google Scholar
  46. 46.
    Tang S-Y, Le Q-T, Shim J-H et al (2006) Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. FEBS J 273:3335–3345. doi: 10.1111/j.1742-4658.2006.05337.x CrossRefGoogle Scholar
  47. 47.
    Priyadharshini R, Manoharan S, Hemalatha D, Gunasekaran P (2010) Repeated random mutagenesis of α-amylase from Bacillus licheniformis for improved pH performance. J Microbiol Biotechnol 20:1696–1701Google Scholar
  48. 48.
    Collier PD, Cromie DDO, Davies AP (1991) Mechanism of formation of chloropropanols present in protein hydrolysates. J Am Oil Chem Soc 68:785–790. doi: 10.1007/BF02662173 CrossRefGoogle Scholar
  49. 49.
    Linke D, Krings U, Zorn H et al (2010) Peptidases from basidiomycetes. European Patent Application EP2139996 (A1)Google Scholar
  50. 50.
    Haefner S, Knietsch A, Scholten E et al (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597. doi: 10.1007/s00253-005-0005-y CrossRefGoogle Scholar
  51. 51.
    Pallauf J, Rimbach G (1997) Nutritional significance of phytic acid and phytase. Arch Anim Nutr 50:301–319. doi: 10.1080/17450399709386141 Google Scholar
  52. 52.
    Lenis NP, Jongbloed AW (1999) New technologies in low pollution swine diets: diet manipulation and use of synthetic amino acids, phytase and phase feeding for reduction of nitrogen and phosphorus excretion and ammonia emission. Asian-australas J Anim Sci 12:305–327Google Scholar
  53. 53.
    Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135:1–41. doi: 10.1016/j.anifeedsci.2006.06.010 CrossRefGoogle Scholar
  54. 54.
    Cao L, Wang W, Yang C et al (2007) Application of microbial phytase in fish feed. Enzyme Microb Technol 40:497–507. doi: 10.1016/j.enzmictec.2007.01.007 Google Scholar
  55. 55.
    Kumar V, Sinha AK, Makkar HPS et al (2012) Phytate and phytase in fish nutrition. J Anim Physiol Anim Nutr 96:335–364. doi: 10.1111/j.1439-0396.2011.01169.x CrossRefGoogle Scholar
  56. 56.
    Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959. doi: 10.1016/j.foodchem.2009.11.052 CrossRefGoogle Scholar
  57. 57.
    Aquilina G, Bories G, Brantom P et al (2010) Scientific opinion on Ronozyme® P (6-phytase) as feed additive for chickens and turkeys for fattening, laying hens, and piglets (weaned), pigs for fattening and sows (poultry and pigs). EFSA J 8(1862):1–27Google Scholar
  58. 58.
    Roopesh K, Ramachandran S, Nampoothiri KM et al (2005) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97:506–511. doi: 10.1016/j.biortech.2005.02.046 CrossRefGoogle Scholar
  59. 59.
    Bogar B, Szakacs G, Linden JC et al (2003) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotechnol 30:183–189.Google Scholar
  60. 60.
    Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206CrossRefGoogle Scholar
  61. 61.
    Chen R, Xue G, Chen P et al (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17:633–643. doi: 10.1007/s11248-007-9138-3 CrossRefGoogle Scholar
  62. 62.
    Gao XR, Wang GK, Su Q et al (2007) Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol Lett 29:1781–1787. doi: 10.1007/s10529-007-9439-x CrossRefGoogle Scholar
  63. 63.
    Hamada A, Yamaguchi K-I, Harada M et al (2006) Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment. Biosci Biotechnol Biochem 70:1524–1527. doi: 10.1271/bbb.60039 CrossRefGoogle Scholar
  64. 64.
    McCann D, Barrett A, Cooper A et al (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370:1560–1567. doi: 10.1016/S0140-6736(07)61306-3 CrossRefGoogle Scholar
  65. 65.
    Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E (2007) Biopreservation, an ecological approach to improve the safety and shelf-life of foods. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology, 2007th edn. Formatex Research Center, BadajozGoogle Scholar
  66. 66.
    Stoyanova LG, Ustyugova EA, Netrusov AI (2012) Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Appl Biochem Microbiol 48:229–243. doi: 10.1134/S0003683812030143 CrossRefGoogle Scholar
  67. 67.
    Juneja VK, Dwivedi HP, Yan X (2012) Novel natural food antimicrobials. Ann Rev Food Sci Technol 3:381–403. doi: 10.1146/annurev-food-022811-101241 CrossRefGoogle Scholar
  68. 68.
    Takala TM, Saris PEJ (2007) Nisin: past, present, and future. In: Riley MA, Gillor O (eds) Research and applications in bacteriocins. Horizon Bioscience, NorfolkGoogle Scholar
  69. 69.
    Callewaert L, Walmagh M, Michiels CW, Lavigne R (2011) Food applications of bacterial cell wall hydrolases. Curr Opin Biotechnol 22:164–171. doi: 10.1016/j.copbio.2010.10.012 CrossRefGoogle Scholar
  70. 70.
    Carini S, Mucchetti G, Neviani E (1985) Lysozyme: activity against Clostridia and use in cheese production - a review. Microbiol Aliments Nutr 3:299–320Google Scholar
  71. 71.
    Bartowsky EJ (2009) Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol 48:149–156. doi: 10.1111/j.1472-765X.2008.02505.x CrossRefGoogle Scholar
  72. 72.
    Makki F, Durance TD (1996) Thermal inactivation of lysozyme as influenced by pH, sucrose and sodium chloride and inactivation and preservative effect in beer. Food Res Int 29:635–645. doi: 10.1016/S0963-9969(96)00074-9 CrossRefGoogle Scholar
  73. 73.
    Takahashi H, Kuramoto S, Miya S et al (2011) Use of commercially available antimicrobial compounds for prevention of Listeria monocytogenes growth in ready-to-eat minced tuna and salmon roe during shelf life. J Food Prot 74:994–998. doi: 10.4315/0362-028X.JFP-10-406 CrossRefGoogle Scholar
  74. 74.
    Nattress FM, Yost CK, Baker LP (2001) Evaluation of the ability of lysozyme and nisin to control meat spoilage bacteria. Int J Food Microbiol 70:111–119. doi: 10.1016/S0168-1605(01)00531-1 CrossRefGoogle Scholar
  75. 75.
    Panesar PS, Panesar R, Singh RS et al (2006) Microbial production, immobilization and applications of β-D-galactosidase. J Chem Technol Biotechnol 81:530–543. doi: 10.1002/jctb.1453 CrossRefGoogle Scholar
  76. 76.
    Wu Y, Yuan S, Chen S et al (2013) Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus -galactosidase. Food Chem 138:1588–1595. doi: 10.1016/j.foodchem.2012.11.052 CrossRefGoogle Scholar
  77. 77.
    Niehaus F, Eck J (2012) Novel beta-galactosidases useful for the production of lactose depleted milk products. European Patent Application EP2530148 (A1)Google Scholar
  78. 78.
    Burin L, Jouppila K, Roos YH et al (2004) Retention of -galactosidase activity as related to Maillard reaction, lactose crystallization, collapse and glass transition in low moisture whey systems. Int Dairy J 14:517–525. doi: 10.1016/j.idairyj.2003.11.003 CrossRefGoogle Scholar
  79. 79.
    Sabioni JG, Pinheiro AJR, Silva DO et al (1984) Control of lactose crystallization in “Dulce de Leche” by beta-D-galactosidase activity from permeabilized Kluyveromyces lactis cells. J Dairy Sci 67:2210–2215CrossRefGoogle Scholar
  80. 80.
    Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res 2010:1–16. doi: 10.4061/2010/473137 CrossRefGoogle Scholar
  81. 81.
    Roy I, Gupta MN (2003) Lactose hydrolysis by Lactozym™ immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39:325–332. doi: 10.1016/S0032-9592(03)00086-4 CrossRefGoogle Scholar
  82. 82.
    Holst HH, Lauritzen K (2010) Process for producing lactose-free milk. European Patent Application EP2207428 (A1)Google Scholar
  83. 83.
    Shimakura K, Tonomura Y, Hamada Y et al (2005) Allergenicity of crustacean extractives and its reduction by protease digestion. Food Chem 91:247–253. doi: 10.1016/j.foodchem.2003.11.010 CrossRefGoogle Scholar
  84. 84.
    Hendriksen HV, Kornbrust BA, Østergaard PR, Stringer MA (2009) Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J Agric Food Chem 57:4168–4176. doi: 10.1021/jf900174q CrossRefGoogle Scholar
  85. 85.
    Friedman M, Levin CE (2008) Review of methods for the reduction of dietary content and toxicity of acrylamide. J Agric Food Chem 56:6113–6140. doi: 10.1021/jf0730486 CrossRefGoogle Scholar
  86. 86.
    Ciesarová Z, Kukurová K, Bednáriková A et al (2009) Improvement of cereal product safety by enzymatic way of acrylamide mitigation. Czech J Food Sci 27:S96–S98Google Scholar
  87. 87.
    Filip S, Fink R, Hribar J, Vidrih R (2010) Trans fatty acids in food and their influence on human health. Food Technol Biotech 48:135–142Google Scholar
  88. 88.
    Brown PH, Carvallo FD, Dinwoodie RC et al (1994) Enzymatic method for preparing transesterified oils. United States Patent Application US 5288619 (A)Google Scholar
  89. 89.
    Ptok S, Heseker H (2010) Trans fatty acids. Ernährungs Umschau 57:472–480Google Scholar
  90. 90.
    Ming LO, Ghazali HM, Chiew Let C (1999) Use of enzymatic transesterified palm stearin-sunflower oil blends in the preparation of table margarine formulation. Food Chem 64:83–88. doi: 10.1016/S0308-8146(98)00083-1 CrossRefGoogle Scholar
  91. 91.
    Zhang H, Xu X, Nilsson J et al (2001) Production of margarine fats by enzymatic interesterification with silica-granulated Thermomyces lanuginosa lipase in a large-scale study. J Am Oil Chem Soc 78:57–64CrossRefGoogle Scholar
  92. 92.
    Farmani J, Hamedi M, Safari M, Madadlou A (2007) Trans-free Iranian vanaspati through enzymatic and chemical transesterification of triple blends of fully hydrogenated soybean, rapeseed and sunflower oils. Food Chem 102:827–833. doi: 10.1016/j.foodchem.2006.06.015 CrossRefGoogle Scholar
  93. 93.
    Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528. doi: 10.1128/AEM.66.2.524-528.2000 CrossRefGoogle Scholar
  94. 94.
    Hoegger PJ, Kilaru S, James TY et al (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326. doi: 10.1111/j.1742-4658.2006.05247.x CrossRefGoogle Scholar
  95. 95.
    Arakane Y, Muthukrishnan S, Beeman RW et al (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci U S A 102:11337–11342. doi: 10.1073/pnas.0504982102 CrossRefGoogle Scholar
  96. 96.
    Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96. doi: 10.1016/j.micron.2003.10.029 CrossRefGoogle Scholar
  97. 97.
    Gavnholt B, Larsen K (2002) Molecular biology of plant laccases in relation to lignin formation. Physiol Plant 116:273–280. doi: 10.1034/j.1399-3054.2002.1160301.x CrossRefGoogle Scholar
  98. 98.
    Osma JF, Toca-Herrera JL, Rodríguez Couto S (2010) Uses of laccases in the food industry. Enzyme Res 2010: Article ID 918761–8 pages. doi: 10.4061/2010/918761
  99. 99.
    Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513. doi: 10.1016/j.biotechadv.2006.04.003 CrossRefGoogle Scholar
  100. 100.
    Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216. doi: 10.1016/S0924-2244(02)00155-3 CrossRefGoogle Scholar
  101. 101.
    Sponholz W-R (2000) Suberase: Eine biotechnologische Möglichkeit Korken zu reinigen. Schweiz Z Obst-Weinbau 24:621–625Google Scholar
  102. 102.
    Schroeder M, Pollinger-Zierler B, Aichernig N et al (2008) Enzymatic removal of off-flavors from apple juice. J Agric Food Chem 56:2485–2489. doi: 10.1021/jf073303m CrossRefGoogle Scholar
  103. 103.
    Giovanelli G, Ravasini G (1993) Apple juice stabilization by combined enzyme-membrane filtration process. Lebensm-Wiss u-Technol 26:1–7CrossRefGoogle Scholar
  104. 104.
    Bouwens EC, Trivedi K, van Vliet C, Winkel C (1999) Method of enhancing color in a tea-based foodstuff. United States Patent Application US 5879730Google Scholar
  105. 105.
    Flander L, Rouau X, Morel M-H et al (2008) Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J Agric Food Chem 56:5732–5742. doi: 10.1021/jf800264a CrossRefGoogle Scholar
  106. 106.
    Renzetti S, Courtin CM, Delcour JA, Arendt EK (2010) Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: Rheological, biochemical and microstructural background. Food Chem 119:1465–1473. doi: 10.1016/j.foodchem.2009.09.028 CrossRefGoogle Scholar
  107. 107.
    Selinheimo E, Kruus K, Buchert J et al (2006) Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci 43:152–159. doi: 10.1016/j.jcs.2005.08.007 CrossRefGoogle Scholar
  108. 108.
    Szweda RT, Schmidt K, Zorn H (2013) Bleaching of colored whey and milk by a multiple-enzyme system. Eur Food Res Technol. doi: 10.1007/s00217-013-2000-3 Google Scholar
  109. 109.
    Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651–1659. doi: 10.1007/s10529-009-0083-5 CrossRefGoogle Scholar
  110. 110.
    Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. doi: 10.1007/s002530100687 CrossRefGoogle Scholar
  111. 111.
    Zorn H, Fraatz MA et al (2012) Enzymatic synthesis of nootkatone. US Patent Application US 2012/0045806 A1Google Scholar
  112. 112.
    Fraatz MA, Riemer SJL et al (2009) A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone. J Mol Catal B Enzym 61:202–207. doi: 10.1016/j.molcatb.2009.07.001 CrossRefGoogle Scholar
  113. 113.
    Krügener S, Krings U, Zorn H, Berger RG (2010) A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation. Bioresour Technol 101:457–462. doi: 10.1016/j.biortech.2009.08.087 CrossRefGoogle Scholar
  114. 114.
    Zelena K, Krings U, Berger RG (2012) Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli. Bioresour Technol 108:231–239. doi: 10.1016/j.biortech.2011.12.097 CrossRefGoogle Scholar
  115. 115.
    Plagemann I, Zelena K, Arendt P et al (2013) LOXPsa1, the first recombinant lipoxygenase from a basidiomycete fungus. J Mol Catal B Enzym 87:99–104. doi: 10.1016/j.molcatb.2012.11.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Alexander Fraatz
    • 1
  • Martin Rühl
    • 1
  • Holger Zorn
    • 1
  1. 1.Institute of Food Chemistry and Food BiotechnologyJustus Liebig University GiessenGiessenGermany

Personalised recommendations