Advertisement

Insect Antenna-Based Biosensors for In Situ Detection of Volatiles

  • Matthias Schott
  • Christoph Wehrenfennig
  • Tina Gasch
  • Andreas Vilcinskas
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 136)

Abstract

Insect antennae are among the most sensitive and selective chemical-sensing organs in the animal kingdom. Insects can perceive picograms of specific volatile organic compounds per cubic meter of air in milliseconds, which is far below the detection thresholds of current analytical devices. These exceptional sensing abilities have many uses in the context of insect biotechnology. Living specimens or parts of them, such as isolated antennae or individual proteins, can serve as biosensors in the field. As volatiles occur in a crude mixture in the environment, knowing which trigger-volatiles are crucial for the insects’ perception of specific incidents is of great value. This knowledge promotes the development of selective sensors for applications, such as fire detection. In this chapter, we discuss the different technical procedures for the preparation and use of insect-based biosensors for the detection of organic volatiles, including those based on insect behavior, insect olfactory proteins, and biomimetic sensing units. We also consider the use of these applications in portable devices outside the laboratory under field conditions.

Graphical Abstract

Keywords

Biosensor Electroantennography GC–MS/EAD Mobile GC–MS Needle-trap device Odorant receptor VOC detection VOC quantification 

Abbreviations

EAG

Electroantennography

EAD

Electroantennographic detection

FETs

Field-effect transistors

FID

Flame ionization detector

GC

Gas-chromatography

MS

Mass-spectrometry

NTD

Needle-trap device

OBPs

Odorant-binding proteins

ORs

Odorant-receptors

POM

Polyoxymethylen

SSRs

Single-sensillum recordings

SPME

Solid-phase microextraction

VOCs

Volatile organic compounds

Notes

Acknowledgments

The authors would like to acknowledge project funding provided by the Hessian Ministry of Science and Art via the LOEWE research focus “AmbiProbe” and the LOEWE research focus “Insect Biotechnology,” which included a generous grant to A.V. We thank Merid Negash Getahun and Dr. Shannon Olsson for their support with the SSR measurements. The authors are indebted to Dr. Richard M. Twyman for the careful editing of the manuscript.

References

  1. 1.
    Glatz R, Bailey-Hill K (2011) Mimicking nature’s noses: from receptor deorphaning to olfactory biosensing. Prog Neurobiol 93(2):270–296CrossRefGoogle Scholar
  2. 2.
    Ridgway K, Lalljie SPD, Smith RM (2010) Analysis of food taints and off-flavours: a review. Food Addit Contam A 27(2):146–168CrossRefGoogle Scholar
  3. 3.
    Schulz S (2010) The chemistry of pheromones and other semiochemicals I. Springer, Berlin HeidelbergGoogle Scholar
  4. 4.
    Leal WS (2005) Pheromone reception. Top Curr Chem 240:1–36Google Scholar
  5. 5.
    Todd JL, Baker TC (1999) Function of peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer, Heidelberg, pp. 67–96 Google Scholar
  6. 6.
    Miller JR, Mori K, Roelofs WL (1977) Gypsy Moth (Lepidoptera-Lymantriidae) field trapping and electroantennogram studies with pheromone enantiomers. J Insect Physiol 23(11–1):1447–1453CrossRefGoogle Scholar
  7. 7.
    Von Arx M, Schmidt-Busser D, Guerin PM (2011) Host plant volatiles induce oriented flight behaviour in male European grapevine moths Lobesia botrana. J Insect Physiol 57(10):1323–1331CrossRefGoogle Scholar
  8. 8.
    Keil TA (1999) Morphology and development of the peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer, Heidelberg, pp 5–47CrossRefGoogle Scholar
  9. 9.
    Rützler M, Zwiebel LJ (2005) Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A 191(9):777–790CrossRefGoogle Scholar
  10. 10.
    Stengl M, Ziegelberger G, Boekhoff I, Krieger J (1999) Perireceptor events and transduction mechanisms in insect olfaction. In: Hansson BS (ed) Insect olfaction. Springer, Heidelberg, pp 49–66CrossRefGoogle Scholar
  11. 11.
    Martini R (1986) Fine-structure and development of the large Sensilla Basiconica on the Antennae of Sphecid Wasps. Tissue Cell 18(1):143–151CrossRefGoogle Scholar
  12. 12.
    Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391CrossRefGoogle Scholar
  13. 13.
    Schneider D (1955) Mikro-Elektroden registrieren die elektrischen Impulse einzelner Sinnesnervenzellen der Antenne des Seidenspinners Bombyx mori L. Industrie-Elektronik 5:3–7Google Scholar
  14. 14.
    Schneider D, Block BC, Boeckh J, Preisner E (1967) Die Reaktion der männlichen Seidenspinner auf Bombykol und seine Isomeren: Elektroantennogramm und Verhalten. Z Vergleich Physiol 54:192–209CrossRefGoogle Scholar
  15. 15.
    Schütz S, Weissbecker B, Hummel HE (1996) Biosensor for volatiles released by damaged plants. Biosens Bioelectron 11(4):427–433CrossRefGoogle Scholar
  16. 16.
    Malo EA, Renou M, Guerrero A (2000) Analytical studies of Spodoptera littoralis sex pheromone components by electroantennography and coupled gas chromatography—electroantennographic detection. Talanta 52(3):525–532CrossRefGoogle Scholar
  17. 17.
    Behrend K (1971) Olfaction under water and in air by water beetle Dytiscus marginalis L. Z Vergl Physiol 75(1):108–122CrossRefGoogle Scholar
  18. 18.
    Roelofs WL (1984) Electroantennogram assays: rapid and convenient screening procedures for pheromones. In: Hummel H, Miller T (ed) Techniques in pheromone research. Springer, New York, pp. 131–159Google Scholar
  19. 19.
    Ockenfels P, Van der Pers J (2004) Electroantennography a practical introduction. Syntech, Kirchzarten. http://www.syntech.nl/manuals/EAGpract.pdf. Accessed 08 Nov 2012
  20. 20.
    Karg G, Suckling DM, Bradley SJ (1997) Defining interaction between electroantennogram responses of Epiphyas postvittana (Lepidoptera: Tortricidae) to pheromone and other volatiles. J Insect Physiol 43(2):179–187CrossRefGoogle Scholar
  21. 21.
    Koch UT, Carde AM, Carde RT (2002) Calibration of an EAG system to measure airborne concentration of pheromone formulated for mating disruption of the pink bollworm moth, Pectinophora gossypiella (Saunders) (Lep., Gelechiidae). J Appl Entomol 126(7–8):431–435CrossRefGoogle Scholar
  22. 22.
    Arn H, Stadler E, Rauscher S (1975) The electroantennagraphic detector—a selective and sensitive tool in gas chromatographic analysis of insect pheromones. Z Naturforsch C 30(6):722–725Google Scholar
  23. 23.
    Schott M, Wehrenfennig C, Gasch T, Düring RA, Vilcinskas A (2013) A Portable GC-MS with an Electro-Antennographic-Detector for Most Sensitive In Situ Measurements of Volatiles. Submitted, under revision Google Scholar
  24. 24.
    Struble DL, Arn H (1984) Combined gas chromatography and electroantennogram recording of insect olfactory responses. In: Hummel H, Miller T (ed) Techniques in pheromone research. Springer, New York, pp. 161–178Google Scholar
  25. 25.
    Myrick AJ, Baker TC (2012) Chopper-stabilized gas chromatography-electroantennography: Part I. Background, signal processing and example. Biosens Bioelectron 31(1):197–204CrossRefGoogle Scholar
  26. 26.
    Myrick AJ, Baker TC (2012) Chopper-modulated locked in amplified gas chromatography—electroantennography Part II: Signal processing and performance comparisons. Ieee Sens J 12(10):2974–2983CrossRefGoogle Scholar
  27. 27.
    Getahun MN, Olsson SB (2012) Max Planck Institute for Chemical Ecology—Department of Evolutionary Neuroethology; personal communicationGoogle Scholar
  28. 28.
    Getahun MN, Wicher D, Hansson BS, Olsson SB (2012) Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity. Front Cell Neurosci 6:54 Google Scholar
  29. 29.
    Den Otter CJ (1977) Single sensillum responses in the male moth Adoxophyes orana (F.v.R.) to female sex pheromone components and their geometrical isomers. J Comp Physiol 121(2):205–222CrossRefGoogle Scholar
  30. 30.
    Van der Pers JNC, Den Otter CJ (1978) Single cell responses from olfactory receptors of small ermine moths to sex-attractants. J Insect Physiol 24(4):337–343CrossRefGoogle Scholar
  31. 31.
    Rebora M, Salerno G, Piersanti S, Dell’Otto A, Gaino E (2012) Olfaction in dragonflies: electrophysiological evidence. J Insect Physiol 58(2):270–277CrossRefGoogle Scholar
  32. 32.
    Bogner F, Boppre M (1989) Single cell recordings reveal hydroxydanaidal as the volatile compound attracting insects to pyrrolizidine alkaloids. Entomol Exp Appl 50(2):171–184CrossRefGoogle Scholar
  33. 33.
    Wadhams LJ (1982) Coupled gas-chromatography—single cell recording—a new technique for use in the analysis of insect pheromones. Z Naturforsch C 37(10):947–952Google Scholar
  34. 34.
    Baker TC, Haynes KF (1989) Field and laboratory electroantennographic measurements of pheromone plume structure correlated with oriental fruit moth behavior. Physiol Entomol 14(1):1–12CrossRefGoogle Scholar
  35. 35.
    Milli R, De Kramer JJ (1989) An EAG detector for field pheromone measurements. In: Elmer R, Singer W (ed) Dynamics and plasticity in neuronal systems: proceedings of the 17th Göttingen neurobiology conference. Thieme, StuttgartGoogle Scholar
  36. 36.
    Sauer AE, Karg G, Koch UT, Dekramer JJ, Milli R (1992) A portable EAG system for the measurement of pheromone concentrations in the field. Chem Senses 17(5):543–553CrossRefGoogle Scholar
  37. 37.
    Van der Pers JNC, Minks AK (1998) A portable electroantennogram sensor for routine measurements of pheromone concentrations in greenhouses. Entomol Exp Appl 87(2):209–215CrossRefGoogle Scholar
  38. 38.
    Koch UT, Ascherl M, Weber M (2002) Field EAG measurements of sprayable pheromone for mating disruption of Sesamia nonagrioides. IOBC wprs Bulletin 25:85–94Google Scholar
  39. 39.
    Rumbo ER, Suckling DM, Karg G (1995) Measurement of airborne pheromone concentrations using electroantennograms—interactions between environmental volatiles and pheromone. J Insect Physiol 41(6):465–471CrossRefGoogle Scholar
  40. 40.
    Färbert P, Koch U, Färbert A, Staten R (1997) Measuring pheromone concentrations in cotton fields with the EAG method. In: Cardé R, Minks A, (ed) Insect pheromone research. Springer, US, pp 347–358Google Scholar
  41. 41.
    Thorpe KW, Van der Pers J, Leonard DS, Sellers P, Mastro VC, Webb RE, Reardon RC (2007) Electroantennogram measurements of atmospheric pheromone concentration after aerial and ground application of gypsy moth mating disruptants. J Appl Entomol 131(2):146–152CrossRefGoogle Scholar
  42. 42.
    Myrick AJ, Park KC, Hetling JR, Baker TC (2008) Real-time odor discrimination using a bioelectronic sensor array based on the insect electroantennogram. Bioinspiration & Biomimetics 3:046006 Google Scholar
  43. 43.
    Vickers NJ, Christensen TA, Baker TC, Hildebrand JG (2001) Odour-plume dynamics influence the brain’s olfactory code. Nature 410(6827):466–470CrossRefGoogle Scholar
  44. 44.
    Lord HL, Zhan WQ, Pawliszyn J (2010) Fundamentals and applications of needle trap devices: a critical review. Analytica chimica acta 677(1):3–18CrossRefGoogle Scholar
  45. 45.
    Van der Pers JNC, Minks AK (1997) Measuring pheromone dispersion in the field with the single sensillum recording technique. In: Cardé R, Minks A (ed) Insect pheromone research, Springer, US, pp 359–371Google Scholar
  46. 46.
    Minks A, Visser H, Dickens D (2006) Jan van der Pers—Obituary. Entomol Exp Appl 121(2):189–190CrossRefGoogle Scholar
  47. 47.
    Schöning MJ, Schütz S, Schroth P, Weissbecker B, Steffen A, Kordoš P, Hummel HE, Luth H (1998) A BioFET on the basis of intact insect antennae. Sensor Actuat B-Chem 47(1–3):235–238CrossRefGoogle Scholar
  48. 48.
    Durnford A, Briens M, Haite M, Grant D, Westley D, Cherry K, Howard T (2011) Insect loading system. I LimitedGoogle Scholar
  49. 49.
    Briens M (2011) Insect conditioning system. I LimitedGoogle Scholar
  50. 50.
    Davis PJ, Wadhams L, Bayliss JS (2007) Detection of odors using insects. I LimitedGoogle Scholar
  51. 51.
    Carew TJ, Sahley CL (1986) Invertebrate learning and memory—from behavior to molecules. Annu Rev Neurosci 9:435–487CrossRefGoogle Scholar
  52. 52.
    Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical-conditioning of proboscis extension in honeybees (Apis-Mellifera). J Comp Psychol 97(2):107–119CrossRefGoogle Scholar
  53. 53.
    Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior in Drosophila-melanogaster. Proc Nat Acad Sci USA 71(3):708–712CrossRefGoogle Scholar
  54. 54.
    Chabaud MA, Devaud JM, Pham-Delegue MH, Preat T, Kaiser L (2006) Olfactory conditioning of proboscis activity in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(12):1335–1348CrossRefGoogle Scholar
  55. 55.
    Hartlieb E (1996) Olfactory conditioning in the moth Heliothis virescens. Naturwissenschaften 83(2):87–88Google Scholar
  56. 56.
    Lewis WJ, Takasu K (1990) Use of learned odors by a parasitic wasp in accordance with host and food-needs. Nature 348(6302):635–636CrossRefGoogle Scholar
  57. 57.
    Fan RJ, Hansson BS (2001) Olfactory discrimination conditioning in the moth Spodoptera littoralis. Physiol Behav 72(1–2):159–165CrossRefGoogle Scholar
  58. 58.
    Lent DD, Kwon HW (2004) Antennal movements reveal associative learning in the American cockroach Periplaneta americana. J Exp Biol 207(2):369–375CrossRefGoogle Scholar
  59. 59.
    Glinwood R, Ahmed E, Qvarfordt E, Ninkovic V (2011) Olfactory learning of plant genotypes by a polyphagous insect predator. Oecologia 166(3):637–647CrossRefGoogle Scholar
  60. 60.
    Kuwabara M (1957) Bildung des bedingten Reflexes vom Pavlov Typus bei der Honigbiene Apis mellifera. J Fac Sci Hokkaido Univ Zool 13:458–464Google Scholar
  61. 61.
    Stollhoff N, Menzel R, Eisenhardt D (2005) Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera). J Neurosci 25(18):4485–4492CrossRefGoogle Scholar
  62. 62.
    Rains GC, Utley SL, Lewis WJ (2006) Behavioral monitoring of trained insects for chemical detection. Biotechnol Progr 22(1):2–8CrossRefGoogle Scholar
  63. 63.
    Utley SL, Rains GC, Lewis W (2007) Behavioral monitoring of Microplitis croceipes, a parasitoid wasp, for detecting target odorants using a computer vision system. T Asabe 50(5):1843–1849CrossRefGoogle Scholar
  64. 64.
    Rains GC, Tomberlin JK, Kulasiri D (2008) Using insect sniffing devices for detection. Trends Biotechnol 26(6):288–294CrossRefGoogle Scholar
  65. 65.
    Frederickx C, Verheggen FJ, Haubruge E (2011) Biosensors in forensic sciences. Biotechnol Agron Soc 15(3):449–458Google Scholar
  66. 66.
    Kiefer H, Krieger J, Olszewski JD, Von Heijne G, Prestwich GD, Breer H (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35(50):16077–16084CrossRefGoogle Scholar
  67. 67.
    Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, Dhanasekaran DN (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol 3(6):325–330CrossRefGoogle Scholar
  68. 68.
    Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etievant P, Ronin C (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem Senses 30(3):195–207CrossRefGoogle Scholar
  69. 69.
    Katada S, Nakagawa T, Kataoka H, Touhara K (2003) Odorant response assays for a heterologously expressed olfactory receptor. Biochem Biophys Res Commun 305(4):964–969CrossRefGoogle Scholar
  70. 70.
    Ciccioli P, Brancaleoni E, Frattoni M, Cecinato A, Pinciarelli L (2001) Determination of volatile organic compounds (VOC) emitted from biomass burning of Mediterranean vegetation species by GC-MS. Anal Lett 34(6):937–955CrossRefGoogle Scholar
  71. 71.
    Schütz S, Weissbecker B, Hummel HE, Apel KH, Schmitz H, Bleckmann H (1999) Insect antenna as a smoke detector. Nature 398(6725):298–299CrossRefGoogle Scholar
  72. 72.
    Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34(19):R125–R149CrossRefGoogle Scholar
  73. 73.
    Kohl D, Heinert L, Bock J, Hofmann T, Schieberle P (2000) Systematic studies on responses of metal-oxide sensor surfaces to straight chain alkanes, alcohols, aldehydes, ketones, acids and esters using the SOMMSA approach. Sensor Actuat B-Chem 70(1–3):43–50CrossRefGoogle Scholar
  74. 74.
    Negri RM, Bernik DL (2008) Tracking the sex pheromone of codling moth against a background of host volatiles with an electronic nose. Crop Prot 27(10):1295–1302CrossRefGoogle Scholar
  75. 75.
    Wehrenfennig C, Schott M, Gasch T, Sauerwald T, Düring RA, Vilcinskas A, Kohl CD (2012) Laboratory characterization of metal-oxide sensors intended for in situ analyses of pheromones—SOMMSA approach. Phys Status Solidi A 209(5):935–939CrossRefGoogle Scholar
  76. 76.
    Minegishi R, Takashima A, Kurabayashi D, Kanzaki R (2012) Construction of a brain-machine hybrid system to evaluate adaptability of an insect. Robot Auton Syst 60(5):692–699CrossRefGoogle Scholar
  77. 77.
    Kanzaki R, Nagasawa S, Shimoyama I (2005) Neural basis of odor-source searching behavior in insect brain systems evaluated with a mobile robot. Chem Senses 30:I285–I286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthias Schott
    • 1
  • Christoph Wehrenfennig
    • 2
  • Tina Gasch
    • 1
  • Andreas Vilcinskas
    • 1
  1. 1.Institute of Phytopathology and Applied ZoologyJustus-Liebig-University of GiessenGiessenGermany
  2. 2.Institute of Soil Science and Soil ConservationJustus-Liebig-University of GiessenGiessenGermany

Personalised recommendations