Advertisement

Y-Linked Markers for Improved Population Control of the Tephritid Fruit Fly Pest, Anastrepha suspensa

  • Marc F. Schetelig
  • Alfred M. Handler
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 136)

Abstract

Insect pest control programs incorporating the sterile insect technique (SIT) rely on the mass production and release of sterilized insects to reduce the wild-type population through infertile matings. Most effective programs release only males to avoid any crop damage caused by female fruit flies or transmission of disease by female mosquitoes. Therefore, the females have to be eliminated, preferably in an early developmental stage, during mass rearing. Different systems and techniques have been created for the sex separation of a few insect species. One of these is the transgenic sex-specific fluorescent protein marking of the insects with automated fluorescent-based sorting of the individuals to achieve sex separation. Here we describe the Y-linked integration of fluorescent markers driven by the widely active Drosophila melanogaster polyubiquitin promoter in the Caribfly, Anastrepha suspensa. Four strains with Y-linked integrations were established with one line expressing the DsRed fluorescent protein marker during embryogenesis. This line now has the possibility for use with automated sex separation in rearing, and the same transgene markers could be used in other insects for similar applications.

Graphical Abstract

Keywords

Sexing Insect pest management Y chromosome 

Notes

Acknowledgments

We thank Shelley Olson for excellent technical assistance. Funding is gratefully acknowledged form the USDA-NIFA-Agriculture and Food Research Initiative (AMH) and the Emmy Noether Program SCHE 1833/1 of the Deutsche Forschungsgemeinschaft (MFS).

Supplementary material

References

  1. 1.
    Klassen W, Curtis CF (2005) History of the Sterile Insect Technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 3–36Google Scholar
  2. 2.
    Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48:459–462CrossRefGoogle Scholar
  3. 3.
    Mcinnis DO, Tam S, Grace C et al (1994) Population suppression and sterility rates induced by variable sex ratio, sterile insect releases of Ceratitis capitata (Diptera: Tephritidae) in Hawaii. Ann Entomol Soc Am 87:231–240CrossRefGoogle Scholar
  4. 4.
    Rendon P, Mcinnis D, Lance D et al (2004) Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J Econ Entomol 97:1547–1553CrossRefGoogle Scholar
  5. 5.
    Baker RH, Sakai RK, Raana K (1981) Genetic sexing for a mosquito sterile-male release. J Hered 72:216–218Google Scholar
  6. 6.
    Yamada H, Benedict MQ, Malcolm CA et al (2012) Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar J 11:208CrossRefGoogle Scholar
  7. 7.
    Franz G (2005) Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique—principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 427–451Google Scholar
  8. 8.
    Opiyo E, Luger D, Nadel D et al (1999) Automation in tsetse mass-rearing process: preliminary observations with Glossina austeni. In: Proceedings of animal trypanosomosis: vector and disease control using nuclear techniques. Second FAO/IAEA seminar for Africa, Zanzibar, Tanzania. Backhuys Publishers, Leiden, NL, 27 Nov–1 Dec 1995, p 187–192Google Scholar
  9. 9.
    Opiyo E, Luger D, Robinson AS (2000) New systems for the large-scale production of male tsetse flies (Diptera: Glossinidae). In: Tan KH (ed) Proceedings: area-wide control of fruit flies and other insect pests, and the 5th international symposium on fruit flies of economic importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia, p 337–344Google Scholar
  10. 10.
    Mcinnis DO, Lim R, Muromoto D et al (2005) Oriental fruit fly: males-only sterile fly releases in Hawaii. In: The 8th exotic fruit fly symposium. Riverside, California, p 34Google Scholar
  11. 11.
    Rössler Y (1979) The genetics of the Mediterranean fruit fly: a ‘white pupae’ mutant. Ann Entomol Soc Am 72:583–585CrossRefGoogle Scholar
  12. 12.
    Mcinnis D, Leblanc L, Mau R (2007) Melon fly (Diptera: Tephritidae) genetic sexing: all-male sterile fly releases in Hawaii. Proc Hawaiian Entomol Soc 39:105–110Google Scholar
  13. 13.
    Baker RH, Sakai RK, Saifuddin UT (1978) Genetic sexing technique for a mosquito sterile male release. Nature 274:253–255CrossRefGoogle Scholar
  14. 14.
    Heinrich JC, Scott MJ (2000) A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 97:8229–8232CrossRefGoogle Scholar
  15. 15.
    Thomas DD, Donnelly CA, Wood RJ et al (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287:2474–2476CrossRefGoogle Scholar
  16. 16.
    Ant T, Koukidou M, Rempoulakis P et al (2012) Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol 10:51CrossRefGoogle Scholar
  17. 17.
    Fu G, Condon KC, Epton MJ et al (2007) Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25:353–357CrossRefGoogle Scholar
  18. 18.
    Ogaugwu CE, Schetelig MF, Wimmer EA (2013) Transgenic sexing system for Ceratitis capitata (Diptera: Tephritidae) based on female-specific embryonic lethality. Insect Biochem Mol Biol 43:1–8 Google Scholar
  19. 19.
    Schetelig MF, Handler AM (2012) A transgenic embryonic sexing system for Anastrepha suspensa (Diptera: Tephritidae). Insect Biochem Mol Biol 42:790–795CrossRefGoogle Scholar
  20. 20.
    Catteruccia F, Benton JP, Crisanti A (2005) An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 23:1414–1417CrossRefGoogle Scholar
  21. 21.
    Condon KC, Condon GC, Dafa’alla TH et al (2007) Genetic sexing through the use of Y-linked transgenes. Insect Biochem Mol Biol 37:1168–1176CrossRefGoogle Scholar
  22. 22.
    Scolari F, Schetelig MF, Bertin S et al (2008) Fluorescent sperm marking to improve the fight against the pest insect Ceratitis capitata (Wiedemann; Diptera: Tephritidae). N Biotechnol 25:76–84CrossRefGoogle Scholar
  23. 23.
    Smith RC, Walter MF, Hice RH et al (2007) Testis-specific expression of the β2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect Mol Biol 16:61–71CrossRefGoogle Scholar
  24. 24.
    Marois E, Scali C, Soichot J et al (2012) High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions. Malar J 11:302CrossRefGoogle Scholar
  25. 25.
    Fritz A, Schable N (2004) Microsatellite loci from the Caribbean Fruit Fly, Anastrepha suspensa (Diptera: Tephritidae). Mol Ecol 4:443–445CrossRefGoogle Scholar
  26. 26.
    Graveley BR, Brooks AN, Carlson JW et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479CrossRefGoogle Scholar
  27. 27.
    Zimowska GJ, Nirmala X, Handler AM (2009) The beta2-tubulin gene from three tephritid fruit fly species and use of its promoter for sperm marking. Insect Biochem Mol Biol 39:508–515CrossRefGoogle Scholar
  28. 28.
    Roberts DB (1986) Drosophila: a practical approach. IRL Press, OxfordGoogle Scholar
  29. 29.
    Saul SH (1982) Rosy-like mutant of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), and its potential for use in a genetic sexing program. Ann Entomol Soc Am 75:480–483CrossRefGoogle Scholar
  30. 30.
    Schetelig MF, Handler AM (2012) Strategy for enhanced transgenic strain development for embryonic conditional lethality in Anastrepha suspensa. Proc Natl Acad Sci USA 109:9348–9353CrossRefGoogle Scholar
  31. 31.
    Schetelig MF, Caceres C, Zacharopoulou A et al (2009) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biology 7:4CrossRefGoogle Scholar
  32. 32.
    Handler AM, Harrell RA (1999) Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 8:449–457CrossRefGoogle Scholar
  33. 33.
    Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Project group Bio-RessourcesJLU Gießen/Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME)GießenGermany
  2. 2.USDA/ARS, Center for MedicalAgricultural and Veterinary EntomologyGainesvilleUSA

Personalised recommendations