Cellulases from Insects

  • Rainer Fischer
  • Raluca Ostafe
  • Richard M. Twyman
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 136)


Bioethanol is currently produced by the fermentation of sugary and starchy crops, but waste plant biomass is a more abundant source because sugars can be derived directly from cellulose. One of the limiting steps in the biomass-to-ethanol process is the degradation of cellulose to fermentable sugars (saccharification). This currently relies on the use of bacterial and/or fungal cellulases, which tend to have low activity under biorefinery conditions and are easily inhibited. Some insect species feed on plant biomass and can efficiently degrade cellulose to produce glucose as an energy source. Although insects were initially thought to require symbiotic relationships with bacteria and fungi to break down cellulose, several species in the orders Dictyoptera, Orthoptera, and Coleoptera have now been shown to produce their own cellulases in the midgut or salivary glands, and putative cellulase genes have been identified in other orders. Insect cellulases often work in concert with cellulases provided by symbiotic microbiota in the gut to achieve efficient cellulolysis. We discuss the current status of insect cellulases and potential strategies that could be used to find novel enzymes and improve their efficiency.

Graphical Abstract


Biofuels Cellulase Cellulose Ethanol Insects Saccharification 





glycoside hydrolase



This work was supported by the Hessian Ministry of Science and Art through funding for the collaborative research projects granted under the LOEWE program “Insect Biotechnology” and by the Excellence Cluster “Tailor-made Fuels from Biomass,” which is funded through the Excellence Initiative by the German federal and state governments to promote science and research at German universities.


  1. 1.
    Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRefGoogle Scholar
  2. 2.
    Hammerschlag R (2006) Ethanol’s energy return on investment: a survey of the literature 1999-present. Environ Sci Technol 40:1744–1750CrossRefGoogle Scholar
  3. 3.
    Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442:241–252CrossRefGoogle Scholar
  4. 4.
    Himmel ME (2008) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  5. 5.
    Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425CrossRefGoogle Scholar
  6. 6.
    Wilson DB (2011) Microbial diversity in cellulose hydrolysis. Curr Opin Microbiol 14:259–263CrossRefGoogle Scholar
  7. 7.
    Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485CrossRefGoogle Scholar
  8. 8.
    la Grange DC, den Haan R, van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Environ Microbiol 87:1195–1208Google Scholar
  9. 9.
    Zhang S, Wolfgang D, Wilson DB (1999) Substrate heterogeneity causes the non-linear kinetics of insoluble cellulose hydrolysis. Biotechnol Bieng 66:35–41CrossRefGoogle Scholar
  10. 10.
    Spezio M, Wilson DB, Karplus PA (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32:9906–9916CrossRefGoogle Scholar
  11. 11.
    Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA (1990) Three dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386CrossRefGoogle Scholar
  12. 12.
    Barr BK, Hsieh Y-L, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592CrossRefGoogle Scholar
  13. 13.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database issue): D233–D238. Google Scholar
  14. 14.
    Wilson DB (2008) Aerobic microbial cellulase systems. In: Himmel ME (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell Publishing, Oxford, pp 374–392CrossRefGoogle Scholar
  15. 15.
    Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013CrossRefGoogle Scholar
  16. 16.
    Ding SY, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R, Bayer EA, Himmel M (2008) A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol 19:218–227CrossRefGoogle Scholar
  17. 17.
    Blumer-Schuette SE, Lewis DL, Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76:8084–8092CrossRefGoogle Scholar
  18. 18.
    Qi M, Jun HS, Forsberg CW (2007) Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl Environ Microbiol 73:6098–6105CrossRefGoogle Scholar
  19. 19.
    Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316CrossRefGoogle Scholar
  20. 20.
    Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632CrossRefGoogle Scholar
  21. 21.
    Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331CrossRefGoogle Scholar
  22. 22.
    Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804CrossRefGoogle Scholar
  23. 23.
    Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784CrossRefGoogle Scholar
  24. 24.
    Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW (2003) Caste- and development-associated gene expression in a lower termite. Genome Biol 4:R62CrossRefGoogle Scholar
  25. 25.
    Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228CrossRefGoogle Scholar
  26. 26.
    Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H (1999) Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447:146–159CrossRefGoogle Scholar
  27. 27.
    Lee SJ, Kim SR, Yoon HJ, Kim I, Lee KS et al (2004) cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol 139:107–116CrossRefGoogle Scholar
  28. 28.
    Sugimura M, Watanabe H, Lo N, Saito H (2003) Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem 270:3455–3460CrossRefGoogle Scholar
  29. 29.
    Wei YD, Lee KS, Gui ZZ, Yoon HJ, Kim I et al (2006) Molecular cloning, expression, and enzymatic activity of a novel endogenous cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Physiol B Biochem Mol Biol 145:220–229CrossRefGoogle Scholar
  30. 30.
    Wei YD, Lee KS, Gui ZZ, Yoon HJ, Kim I et al (2006) N-linked glycosylation of a beetle (Apriona germari) cellulase Ag-EGase II is necessary for enzymatic activity. Insect Biochem Mol Biol 36:435–441CrossRefGoogle Scholar
  31. 31.
    Wei YD, Lee SJ, Lee KS, Gui ZZ, Yoon HJ et al (2005) N-glycosylation is necessary for enzymatic activity of a beetle (Apriona germari) cellulase. Biochem Biophys Res Commun 329:331–336CrossRefGoogle Scholar
  32. 32.
    Kim N, Choo YM, Lee KS, Hong SJ, Seol KY et al (2008) Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp Biochem Physiol B Biochem Mol Biol 150:368–376CrossRefGoogle Scholar
  33. 33.
    Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament SA et al (2006) Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol Biol 15:563–576CrossRefGoogle Scholar
  34. 34.
    Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22:1273–1284CrossRefGoogle Scholar
  35. 35.
    Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc London Sci Ser B 270(Suppl 1):S69–72Google Scholar
  36. 36.
    Suzuki K-I, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778CrossRefGoogle Scholar
  37. 37.
    The International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38(1036–45):8Google Scholar
  38. 38.
    Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, Zimin AV, Hughes DS, Ferguson LC, Martin SH et al (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98Google Scholar
  39. 39.
    Zhan S, Merlin C, Boore JL, Reppert SM (2011) The monarch butterfly genome yields insights into long-distance migration. Cell 147(5):1171–1185CrossRefGoogle Scholar
  40. 40.
    Willis JD, Oppert B, Oppert C, Klingeman WE, Jurat-Fuentes JL (2011) Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). J Insect Physiol 57(2):300–306CrossRefGoogle Scholar
  41. 41.
    Byeon GM, Lee KS, Gui ZZ, Kim I, Kang PD et al (2005) A digestive beta-glucosidase from the silk-worm, Bombyx mori: cDNA cloning, expression and enzymatic characterization. Comp Biochem Physiol B Biochem Mol Biol 141:418–427CrossRefGoogle Scholar
  42. 42.
    Yuki M, Moriya S, Inoue T, Kudo T (2008) Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zool Sci 25:401–406CrossRefGoogle Scholar
  43. 43.
    Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 1997(15):583–620CrossRefGoogle Scholar
  44. 44.
    Ni J, Takehara M, Watanabe H (2005) Heterologous overexpression of a mutant termite cellulase gene in Escherichia coli by DNA shuffling of four orthologous parental cDNAs. Biosci Biotechnol Biochem 69:1711–1720CrossRefGoogle Scholar
  45. 45.
    Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246CrossRefGoogle Scholar
  46. 46.
    Georgiou G (2000) Analysis of large libraries of protein mutants using flow cytometry. Adv Protein Chem 55:293–315CrossRefGoogle Scholar
  47. 47.
    Roberts RW (1999) Totally in vitro protein selection using mRNA-protein fusions and ribosome display. Curr Opin Chem Biol 3:268–273CrossRefGoogle Scholar
  48. 48.
    Cohen N, Abramov S, Dror Y, Freeman A (2001) In vitro enzyme evolution: the screening challenge of isolating the one in a million. Trends Biotechnol 19:507–510CrossRefGoogle Scholar
  49. 49.
    Lin H, Cornish VW (2002) Screening and selection methods for large-scale analysis of protein function. Angewandte Chemie 41:4402–4425CrossRefGoogle Scholar
  50. 50.
    Olsen M, Iverson B, Georgiou G (2000) High-throughput screening of enzyme libraries. Current Opin Biotechnol 11:331–337CrossRefGoogle Scholar
  51. 51.
    Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS (2005) High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem Biol 12:1281–1289CrossRefGoogle Scholar
  52. 52.
    Dashtban M, Maki M, Leung KT, Mao C, Qin W (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Critical Rev Biotechnol 30:302–309CrossRefGoogle Scholar
  53. 53.
    Boschker HT, Cappenberg TE, Using ASM (1994) A sensitive method using 4-methylumbelliferyl-β-cellobiose as a substrate to measure (1,4)-β-glucanase activity in sediments. Appl Env Microbiol 60:3592–3596Google Scholar
  54. 54.
    Ostafe R, Prodanovic R, Commandeur U, Fischer R (2012) Flow cytometry-based ultra-high-throughput screening assay for cellulase activity. Anal Biochem 2012 (published online ahead of print)Google Scholar
  55. 55.
    Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9CrossRefGoogle Scholar
  56. 56.
    Itakura S, Ueshima K, Tanaka H, Enoki A (1995) Degradation of wood components by subterranean termite, Coptotermes formosanus Shiraki. Mokuzai Gakkaishi 41:580–586Google Scholar
  57. 57.
    Yoshimura T, Tsunoda K, Takahashi M (1996) Degradation of wood in the digestive tract of a higher termite, Nasutitermes takasagoensis (Shiraki) (Isoptera: Termitidae). Mokuzai Gakkaishi 42:1250–1257Google Scholar
  58. 58.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  59. 59.
    Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14:301–304CrossRefGoogle Scholar
  60. 60.
    Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON et al (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038CrossRefGoogle Scholar
  61. 61.
    Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167CrossRefGoogle Scholar
  62. 62.
    Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565CrossRefGoogle Scholar
  63. 63.
    Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 122:112–122CrossRefGoogle Scholar
  64. 64.
    Takematsu Y (1998) Comparative morphology of the gut of termite genera from Japan. Bull Inst Trop Agr Kyushu Univ 21:3–41Google Scholar
  65. 65.
    Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228CrossRefGoogle Scholar
  66. 66.
    Scharf ME (2008) Termite digestomes as sources for novel lignocellulases. Biofuels Bioprod Biorefining 2:540–552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rainer Fischer
    • 1
  • Raluca Ostafe
    • 1
  • Richard M. Twyman
    • 2
  1. 1.Fraunhofer IMEAachenGermany
  2. 2.TRM LtdYorkUK

Personalised recommendations