Advertisement

Insect-Derived Enzymes: A Treasure for Industrial Biotechnology and Food Biotechnology

  • Nicole Mika
  • Holger Zorn
  • Martin Rühl
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 136)

Abstract

Insects are the most diverse group of organisms on earth, colonizing almost every ecological niche of the planet. To survive in various and sometimes extreme habitats, insects have established diverse biological and chemical systems. Core components of these systems are enzymes that enable the insects to feed on diverse nutrient sources. The enzymes are produced by either the insects themselves (homologous) or by symbiotic organisms located in the insects’ bodies or in their nests (heterologous). The use of these insect-associated enzymes for applications in the fields of food biotechnology and industrial (white) biotechnology is gaining more and more interest. Prominent examples of insect-derived enzymes include peptidases, amylases, lipases, and β-d-glucosidases. Highly potent peptidases for the degradation of gluten , a storage protein that can cause intestinal disorders, may be received from grain pests . Several insects, such as bark and ambrosia beetles and termites, are able to feed on wood. In the field of white biotechnology, their cellulolytic enzyme systems of mainly endo-1,4-β-d-glucanases and β-d-glucosidases can be employed for saccharification of the most prominent polymer on earth—cellulose.

Graphical Abstract

Keywords

Beetles Gluten Grain pests Hydrolases 

References

  1. 1.
    Gustavsson L, Eriksson L, Sathre R (2011) Costs and CO2 benefits of recovering, refining and transporting logging residues for fossil fuel replacement. Appl Energy 88:192–197CrossRefGoogle Scholar
  2. 2.
    Gross J, Schumacher K, Schmidtberg H et al (2008) Protected by fumigants: beetle perfumes in antimicrobial defense. J Chem Ecol 34:179–188CrossRefGoogle Scholar
  3. 3.
    Schlipalius DI, Valmas N, Tuck AG et al. (2012) A core metabolic enzyme mediates resistance to phosphine gas. Science (Washington, DC, U. S.) 338:807–810Google Scholar
  4. 4.
    Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philos T Roy Soc B 357:849–862CrossRefGoogle Scholar
  5. 5.
    Landureau JC, Jolles P (1970) Lytic enzyme produced in vitro by insect cells: lysozyme or chitinase. Nature 225:968–969CrossRefGoogle Scholar
  6. 6.
    Currie CR (2001) A community of ants, fungi, and bacteria. Annu Rev Microbiol 55:357–380CrossRefGoogle Scholar
  7. 7.
    Scharf ME, Karl ZJ, Sethi A et al (2011) Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One 6:e21709CrossRefGoogle Scholar
  8. 8.
    Cannings RA, Scudder GGE (2005) The beetles (Coleoptera of British Columbia). The insect families of British Columbia. http://www.geog.ubc.ca/biodiversity/efauna/InsectsofBritishColumbia.html. Accessed 12 Dec 2012
  9. 9.
    Kotkar HM, Sarate PJ, Tamhane VA et al (2009) Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. J Insect Physiol 55:663–670CrossRefGoogle Scholar
  10. 10.
    Kazzazi M, Bandani AR, Hosseinkhani S (2005) Biochemical characterization of alpha-amylase of the sunn pest, Eurygaster integriceps. Entomol Sci 8:371–377CrossRefGoogle Scholar
  11. 11.
    Applebaum SW, Konijn AM (1965) The utilization of starch by larvae of the flour beetle, Tribolium castaneum. J Nutr 85:275–282Google Scholar
  12. 12.
    Oppert B, Walters P, Zuercher M (2006) Digestive proteinases of the larger black flour beetle, Cynaeus angustus (Coleoptera: Tenebrionidae). Bull Entomol Res 96:167–172CrossRefGoogle Scholar
  13. 13.
    Vinokurov K, Elpidina E, Oppert B et al (2006) Fractionation of digestive proteinases from Tenebrio molitor (Coleoptera: Tenebrionidae) larvae and role in protein digestion. Comp Biochem Phys B 145:138–146CrossRefGoogle Scholar
  14. 14.
    Castro-Guillén JL, Mendiola-Olaya E, García-Gasca T et al (2012) Partial characterization of serine peptidases in larvae of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), reveals insensitive peptidases to some plant peptidase inhibitors. J Stored Prod Res 50:28–35CrossRefGoogle Scholar
  15. 15.
    Green P, Cellier C (2007) Celiac disease. N Engl J Med 357:1731–1743CrossRefGoogle Scholar
  16. 16.
    Catassi C, Rossini M, Ratsch IM et al (1993) Dose dependent effects of protracted ingestion of small amounts of gliadin in coeliac disease children: a clinical and jejunal morphometric study. Gut 34:1515–1519CrossRefGoogle Scholar
  17. 17.
    Edens L, Dekker P, van der Hoeven R et al (2005) Extracellular prolyl endoprotease from Aspergillus niger and Its use in the debittering of protein hydrolysates. J Agric Food Chem 53:7950–7957CrossRefGoogle Scholar
  18. 18.
    Geßendorfer B, Hartmann G, Wieser H et al (2011) Determination of celiac disease-specific peptidase activity of germinated cereals. Eur Food Res Technol 232:205–209CrossRefGoogle Scholar
  19. 19.
    Shewry PR (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958CrossRefGoogle Scholar
  20. 20.
    Applebaum SW, Birk Y, Harpaz I et al (1964) Comparative studies on proteolytic enzymes of Tenebrio molitor. Comp Biochem Physiol 11:85–103CrossRefGoogle Scholar
  21. 21.
    Elpidina E, Goptar I (2007) Digestive peptidases in Tenebrio molitor and possibility of use to treat celiac disease. Entomol Res 37:139–147CrossRefGoogle Scholar
  22. 22.
    Goptar I, Semashko T, Danilenko S et al (2012) Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored-product pests. Comp Biochem Phys B 161:148–154CrossRefGoogle Scholar
  23. 23.
    Terra WR, Cristofoletti PT (1996) Midgut proteinases in three divergent species of Coleoptera. Comp Biochem Physiol 113:725–730CrossRefGoogle Scholar
  24. 24.
    Vinokurov K, Elpidina E, Zhuzhikov D et al (2009) Digestive proteolysis organization in two closely related Tenebrionid beetles: red flour beetle (Tribolium castaneum) and confused flour beetle (Tribolium confusum). Arch Insect Biochem Physiol 70:254–279CrossRefGoogle Scholar
  25. 25.
    Konarev AV, Beaudoin F, Marsh J et al (2011) Characterization of a glutenin-specific serine proteinase of sunn bug Eurygaster integricepts put. J Agric Food Chem 59:2462–2470CrossRefGoogle Scholar
  26. 26.
    Mehrabadi M, Bandini AR, Saadati F et al (2011) α-amylase activity of stored products insects and its inhibition by medicinal plant extracts. J Agric Sci Technol 13:1173–1182Google Scholar
  27. 27.
    Murdock LL, Brookhart G, Dunn PE et al (1987) Cysteine digestive proteinases in Coleoptera. Comp Biochem Phys B 87:783–787Google Scholar
  28. 28.
    Saadati Bezdi M, Fatshbaf Pourabad R, Toorchi M et al (2012) Protein patterns in the salivary gland of the sunn pest, Eurygaster integriceps (Put.) (Hemiptera: Scutelleridae). Türk Entomol Derg 36:215–223Google Scholar
  29. 29.
    Grillo LA, Majerowicz D, Gondim KC (2007) Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): Role of a midgut triacylglycerol-lipase. Insect Biochem Mol Biol 37:579–588CrossRefGoogle Scholar
  30. 30.
    Shen Z, Pappan K, Mutti NS et al (2005) Pectinmethylesterase from the rice weevil, Sitophilus oryzae: cDNA isolation and sequencing, genetic origin, and expression of the recombinant enzyme. J Insect Sci 5:21CrossRefGoogle Scholar
  31. 31.
    Busch R, Hirth T, Liese A et al (2006) The utilization of renewable resources in German industrial production. Biotechnol J 1:770–776CrossRefGoogle Scholar
  32. 32.
    Zhang YP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35:367–375CrossRefGoogle Scholar
  33. 33.
    Hatakka A (1994) Lignin modifying enzymes from selected white-rot fungi—production and role in lignin degradation. FEMS Microbiol Rev 13:125–135CrossRefGoogle Scholar
  34. 34.
    Liers C, Arnstadt T, Ullrich R et al (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102CrossRefGoogle Scholar
  35. 35.
    Morrison M, Pope PB, Denman SE et al (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol 20:358–363CrossRefGoogle Scholar
  36. 36.
    Pauchet Y, Wilkinson P, Chauhan R et al (2010) Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS One 5:e15635CrossRefGoogle Scholar
  37. 37.
    Geib SM, Filley TR, Hatcher PG et al (2008) Lignin degradation in wood-feeding insects. PNAS 105:12932–12937CrossRefGoogle Scholar
  38. 38.
    Tokuda G, Watanabe H, Lo N (2007) Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases? Gene 401:131–134CrossRefGoogle Scholar
  39. 39.
    Tartar A, Wheeler MM et al. (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:25Google Scholar
  40. 40.
    Pauchet Y, Wilkinson P, van Munster M et al (2009) Pyrosequencing of the midgut transcriptome of the poplar leaf beetle Chrysomela tremulae reveals new gene families in Coleoptera. Insect Biochem Mol Biol 39:403–413CrossRefGoogle Scholar
  41. 41.
    DiGuistini S, Wang Y, Liao NY et al (2011) Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. PNAS 108:2504–2509CrossRefGoogle Scholar
  42. 42.
    King AJ, Cragg SM, Li Y et al (2010) Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. PNAS 107:5345–5350CrossRefGoogle Scholar
  43. 43.
    Zhang D, Lax AR, Bland JM et al (2011) Characterization of a new endogenous endo-β-1,4-glucanase of Formosan subterranean termite (Coptotermes formosanus). Insect Biochem Mol Biol 41:211–218CrossRefGoogle Scholar
  44. 44.
    Watanabe H, Tokuda G (2010) Cellulolytic Systems in Insects. Annu Rev Entomol 55:609–632CrossRefGoogle Scholar
  45. 45.
    Zhou X, Kovaleva ES, Wu-Scharf D et al (2010) Production and characterization of a recombinant beta-1,4-endoglucanase (glycohydrolase family 9) from the termite Reticulitermes flavipes. Arch Insect Biochem Physiol 74:147–162CrossRefGoogle Scholar
  46. 46.
    Scharf ME, Kovaleva ES, Jadhao S et al (2010) Functional and translational analyses of a beta-glucosidase gene (glycosyl hydrolase family 1) isolated from the gut of the lower termite Reticulitermes flavipes. Insect Biochem Mol 40:611–620CrossRefGoogle Scholar
  47. 47.
    Ni J, Tokuda G, Takehara M et al (2007) Heterologous expression and enzymatic characterization of β-glucosidase from the drywood-eating termite, Neotermes koshunensis. Appl Entomol Zool 42:457–463CrossRefGoogle Scholar
  48. 48.
    Uchima CA, Tokuda G, Watanabe H et al (2012) Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant-glucosidase from the termite Nasutitermes takasagoensis. Appl Environ Microbiol 78:4288–4293CrossRefGoogle Scholar
  49. 49.
    Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687Google Scholar
  50. 50.
    Kohler T, Dietrich C, Scheffrahn RH et al (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701CrossRefGoogle Scholar
  51. 51.
    Zhang D, Allen AB, Lax AR (2012) Functional analyses of the digestive β-glucosidase of formosan subterranean termites (Coptotermes formosanus). J Insect Physiol 58:205–210CrossRefGoogle Scholar
  52. 52.
    Wu Y, Chi S, Yun C et al (2012) Molecular cloning and characterization of an endogenous digestive β-glucosidase from the midgut of the fungus-growing termite Macrotermes barneyi. Insect Mol Biol 21:604–614CrossRefGoogle Scholar
  53. 53.
    Uchima CA, Tokuda G, Watanabe H et al (2011) Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol 89:1761–1771CrossRefGoogle Scholar
  54. 54.
    Byeon GM, Lee KS, Gui ZZ et al (2005) A digestive β-glucosidase from the silkworm, Bombyx mori: cDNA cloning, expression and enzymatic characterization. Comp Biochem Phys B 141:418–427CrossRefGoogle Scholar
  55. 55.
    Yapi DYA, Gnakri D, Niamke SL et al (2009) Purification and biochemical characterization of a specific β-glucosidase from the digestive fluid of larvae of the palm weevil, Rhynchophorus palmarum. J Insect Sci 9:1–13CrossRefGoogle Scholar
  56. 56.
    Eigenheer AL, Keeling CI, Young S et al (2003) Comparison of gene representation in midguts from two phytophagous insects, Bombyx mori and Ips pini, using expressed sequence tags. Gene 316:127–136CrossRefGoogle Scholar
  57. 57.
    Geib SM, Tien M, Hoover K (2010) Identification of proteins involved in lignocellulose degradation using in gel zymogram analysis combined with mass spectroscopy-based peptide analysis of gut proteins from larval Asian longhorned beetles, Anoplophora glabripennis. Insect Sci 17:253–264CrossRefGoogle Scholar
  58. 58.
    Scully ED, Hoover K, Carlson J et al (2012) Proteomic analysis of Fusarium solani isolated from the Asian longhorned beetle Anoplophora glabripennis. PLoS One 7:e32990CrossRefGoogle Scholar
  59. 59.
    Lee SJ, Kim SR, Yoon HJ et al (2004) cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp Biochem Phys B 139:107–116CrossRefGoogle Scholar
  60. 60.
    Lee SJ, Lee KS, Kim SR et al (2005) A novel cellulase gene from the mulberry longicorn beetle, Apriona germari: gene structure, expression, and enzymatic activity. Comp Biochem Phys B 140:551–560CrossRefGoogle Scholar
  61. 61.
    Sugimura M, Watanabe H, Lo N et al (2003) Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem 270:3455–3460CrossRefGoogle Scholar
  62. 62.
    Willis JD, Oppert B, Oppert C et al (2011) Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). J Insect Physiol 57:300–306CrossRefGoogle Scholar
  63. 63.
    Petersen TN, Brunak S, von Heijne G et al (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefGoogle Scholar
  64. 64.
    Chang C, Wu CP, Lu S et al (2012) A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca). Insect Biochem Mol Biol 42:629–636CrossRefGoogle Scholar
  65. 65.
    De Fine Licht HH, Schiøtt M, Mueller UG et al (2010) Evolutionary transitions in enzyme activity of ant fungus gardens. Evol 64:2055–2069Google Scholar
  66. 66.
    Moller IE, de Fine Licht HH, Harholt J et al (2011) The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens. PLoS One 6:e17506CrossRefGoogle Scholar
  67. 67.
    Rønhede S, Boomsma JJ, Rosendahl S (2004) Fungal enzymes transferred by leaf-cutting ants in their fungus gardens. Mycol Res 108:101–106CrossRefGoogle Scholar
  68. 68.
    Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565CrossRefGoogle Scholar
  69. 69.
    Liers C, Ullrich R, Steffen KT et al (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol 69:573–579CrossRefGoogle Scholar
  70. 70.
    Sugumaran M (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigm Cell Res 15:2–9CrossRefGoogle Scholar
  71. 71.
    Coy M, Salem T, Denton J et al (2010) Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol 40:723–732CrossRefGoogle Scholar
  72. 72.
    Niu B, Shen W, Liu Y et al (2008) Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer, Monochamus alternatus. Insect Mol Biol 17:303–312CrossRefGoogle Scholar
  73. 73.
    Futahashi R, Tanaka K, Matsuura Y et al (2011) Laccase2 is required for cuticular pigmentation in stinkbugs. Insect Biochem Mol Biol 41:191–196CrossRefGoogle Scholar
  74. 74.
    Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50CrossRefGoogle Scholar
  75. 75.
    Euring M, Rühl M, Ritter N et al (2011) Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: Physicochemical analysis of the reaction mechanism. Biotechnol J 6:1253–1261CrossRefGoogle Scholar
  76. 76.
    Jensen RG (1983) Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids 18:650–657CrossRefGoogle Scholar
  77. 77.
    Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Uses of laccases in the food industry. Enzyme Res 2010:1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Food Chemistry and Food BiotechnologyJustus Liebig University GiessenGiessenGermany

Personalised recommendations