Printing Peptide Arrays with a Complementary Metal Oxide Semiconductor Chip

  • Felix F. Loeffler
  • Yun-Chien Cheng
  • Bastian Muenster
  • Jakob Striffler
  • Fanny C. Liu
  • F. Ralf Bischoff
  • Edgar Doersam
  • Frank Breitling
  • Alexander Nesterov-Mueller
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 137)


In this chapter, we discuss the state-of-the-art peptide array technologies, comparing the spot technique, lithographical methods, and microelectronic chip-based approaches. Based on this analysis, we describe a novel peptide array synthesis method with a microelectronic chip printer. By means of a complementary metal oxide semiconductor chip, charged bioparticles can be patterned on its surface. The bioparticles serve as vehicles to transfer molecule monomers to specific synthesis spots. Our chip offers 16,384 pixel electrodes on its surface with a spot-to-spot pitch of 100 μm. By switching the voltage of each pixel between 0 and 100 V separately, it is possible to generate arbitrary particle patterns for combinatorial molecule synthesis. Afterwards, the patterned chip surface serves as a printing head to transfer the particle pattern from its surface to a synthesis substrate. We conducted a series of proof-of-principle experiments to synthesize high-density peptide arrays. Our solid phase synthesis approach is based on the 9-fluorenylmethoxycarbonyl protection group strategy. After melting the particles, embedded monomers diffuse to the surface and participate in the coupling reaction to the surface. The method demonstrated herein can be easily extended to the synthesis of more complicated artificial molecules by using bioparticles with artificial molecular building blocks. The possibility of synthesizing artificial peptides was also shown in an experiment in which we patterned biotin particles in a high-density array format. These results open the road to the development of peptide-based functional modules for diverse applications in biotechnology.

Graphical Abstract


Functional particle deposition High-throughput screening Peptide microarray Solid-phase synthesis 



Acetic anhydride


Complementary metal oxide semiconductor








Methyl methacrylate






Poly(ethylene glycol) methacrylate






Trifluoroacetic acid


  1. 1.
    Löffler F (2012) Development of particle-based high-density peptide arrays for application in antibody assays. Ph.D., thesis, University of HeidelbergGoogle Scholar
  2. 2.
    Loeffler F, Schirwitz C, Wagner J, Koenig K, Maerkle F, Torralba G, Hausmann M, Bischoff FR, Nesterov-Mueller A, Breitling F (2012) Biomolecule arrays using functional combinatorial particle patterning on microchips. Adv Funct Mater 22(12):2503–2508. doi: 10.1002/adfm.201103103 CrossRefGoogle Scholar
  3. 3.
    Cheng Y-C (2012) CMOS-chip based printing system for combinatorial synthesis. Ph.D., thesis, Technical University of DarmstadtGoogle Scholar
  4. 4.
    Carr PA, Church GM (2009) Genome engineering. Nat Biotechnol 27(12):1151–1162. doi: 10.1038/nbt.1590 CrossRefGoogle Scholar
  5. 5.
    Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7(3):200–210. doi: 10.1038/nrg1809 CrossRefGoogle Scholar
  6. 6.
    Tian JD, Quan JY, Saaem I, Tang N, Ma SM, Negre N, Gong H, White KP (2011) Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol 29(5):449–452. doi: 10.1038/nbt.1847 CrossRefGoogle Scholar
  7. 7.
    Kosuri S, Eroshenko N, LeProust EM, Super M, Way J, Li JB, Church GM (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28(12):1295–1299. doi: 10.1038/nbt.1716 CrossRefGoogle Scholar
  8. 8.
    Katz C, Levy-Beladev L, Rotem-Bamberger S, Rito T, Rudiger SGD, Friedler A (2011) Studying protein–protein interactions using peptide arrays. Chem Soc Rev 40(5):2131–2145. doi: 10.1039/C0cs00029a CrossRefGoogle Scholar
  9. 9.
    Seeberger PH, Haase WC (2000) Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. Chem Rev 100(12):4349–4393. doi: 10.1021/Cr9903104 Google Scholar
  10. 10.
    Merrifield RB (1965) Automated synthesis of peptides. Science 150(3693):178–185CrossRefGoogle Scholar
  11. 11.
    Smith GP (1985) Filamentous fusion phage—novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317. doi: 10.1126/science.4001944 CrossRefGoogle Scholar
  12. 12.
    Mccafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies—filamentous phage displaying antibody variable domains. Nature 348(6301):552–554. doi: 10.1038/348552a0 CrossRefGoogle Scholar
  13. 13.
    Dübel S, Breitling F (1999) Recombinant antibodies, English edn. Wiley, New YorkGoogle Scholar
  14. 14.
    Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed spatially addressable parallel chemical synthesis. Science 251(4995):767–773CrossRefGoogle Scholar
  15. 15.
    Pellois JP, Zhou XC, Srivannavit O, Zhou TC, Gulari E, Gao XL (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20(9):922–926. doi: 10.1038/Nbt723 CrossRefGoogle Scholar
  16. 16.
    Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24. doi: 10.1038/4447 CrossRefGoogle Scholar
  17. 17.
    Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SPA, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296(5569):916–919. doi: 10.1126/science.1068597 CrossRefGoogle Scholar
  18. 18.
    Matsuzaki H, Dong SL, Loi H, Di XJ, Liu GY, Hubbell E, Law J, Berntsen T, Chadha M, Hui H, Yang GR, Kennedy GC, Webster TA, Cawley S, Walsh PS, Jones KW, Fodor SPA, Mei R (2004) Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Meth 1(2):109–111. doi: 10.1038/Nmeth718 CrossRefGoogle Scholar
  19. 19.
    Breitling F, Loffler F, Schirwitz C, Cheng YC, Markle F, Konig K, Felgenhauer T, Dorsam E, Bischoff FR, Nesterov-Muller A (2011) Alternative setups for automated peptide synthesis. Mini-Rev Org Chem 8(2):121–131CrossRefGoogle Scholar
  20. 20.
    Li SW, Marthandan N, Bowerman D, Garner HR, Kodadek T (2005) Photolithographic synthesis of cyclic peptide arrays using a differential deprotection strategy. Chem Commun 5:581–583. doi: 10.1039/B415578e CrossRefGoogle Scholar
  21. 21.
    Buus S, Rockberg J, Forsstrom B, Nilsson P, Uhlen M, Schafer-Nielsen C (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteomics 11(12):1790–1800. doi: 10.1074/mcp.M112.020800 CrossRefGoogle Scholar
  22. 22.
    Southern E (2007) Method and apparatus for analysing polynucleotide sequences. EP Patent 0,373,203Google Scholar
  23. 23.
    Ekins RP (1989) Multi-analyte immunoassay. J Pharm Biomed 7(2):155–168. doi: 10.1016/0731-7085(89)80079-2 CrossRefGoogle Scholar
  24. 24.
    Frank R (1992) Spot-synthesis—an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48(42):9217–9232CrossRefGoogle Scholar
  25. 25.
    Nishioka GM (1995) Generation of combinatorial libraries. US Patent 5(449):754Google Scholar
  26. 26.
  27. 27.
    Stadler V, Felgenhauer T, Beyer M, Fernandez S, Leibe K, Guttler S, Groning M, Konig K, Torralba G, Hausmann M, Lindenstruth V, Nesterov A, Block I, Pipkorn R, Poustka A, Bischoff FR, Breitling F (2008) Combinatorial synthesis of peptide arrays with a laser printer. Angew Chem Int Edit 47(37):7132–7135. doi: 10.1002/anie.200801616 CrossRefGoogle Scholar
  28. 28.
    Beyer M, Nesterov A, Block I, Konig K, Felgenhauer T, Fernandez S, Leibe K, Torralba G, Hausmann M, Trunk U, Lindenstruth V, Bischoff FR, Stadler V, Breitling F (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science 318(5858):1888. doi: 10.1126/science.1149751 CrossRefGoogle Scholar
  29. 29.
    Koenig K, Block I, Nesterov A, Torralba G, Fernandez S, Felgenhauer T, Leibe K, Schirwitz C, Loeffler F, Painke F, Wagner J, Trunk U, Bischoff FR, Breitling F, Stadler V, Hausmann M, Lindenstruth V (2010) Programmable high voltage CMOS chips for particle-based high-density combinatorial peptide synthesis. Sens Actuator B-Chem 147(2):418–427. doi: 10.1016/j.snb.2009.12.039 CrossRefGoogle Scholar
  30. 30.
    Loeffler F, Wagner J, Koenig K, Maerkle F, Fernandez S, Schirwitz C, Torralba G, Hausmann M, Lindenstruth V, Bischoff FR, Breitling F, Nesterov A (2011) High-precision combinatorial deposition of micro particle patterns on a microelectronic chip. Aerosol Sci Tech 45(1):65–74. doi: 10.1080/02786826.2010.517814 CrossRefGoogle Scholar
  31. 31.
    Wagner J, Koenig K, Förtsch T, Loeffler F, Fernandez S, Felgenhauer T, Schirwitz C, Painke F, Torralba G, Lindenstruth V, Bischoff FR, Stadler V, Breitling F, Hausmann M, Nesterov-Müller A (2011) Microparticle transfer onto pixel electrodes of 45 μm pitch on HV-CMOS chips—simulation and experiment. Sens Actuator A-Phys 172(2):533–545CrossRefGoogle Scholar
  32. 32.
    Kawagishi Y, Ishida Y, Ishikawa K (1983) Metal complexes for use in developers for electrostatic images, charge control function. United States Patent 4404271Google Scholar
  33. 33.
    Nesterov A, Loffler F, Konig K, Trunk U, Leibe K, Felgenhauer T, Stadler V, Bischoff R, Breitling F, Lindenstruth V, Hausmann M (2007) Noncontact charge measurement of moving microparticles contacting dielectric surfaces. Rev Sci Instrum 78(7):075111. doi: 10.1063/1.2756629 CrossRefGoogle Scholar
  34. 34.
    Nesterov A, Loffler F, Konig K, Trunk U, Leibe K, Felgenhauer T, Bischoff FR, Breitling F, Lindenstruth V, Stadler V, Hausmann M (2007) Measurement of triboelectric charging of moving micro particles by means of an inductive cylindrical probe. J Phys D Appl Phys 40(19):6115–6120. doi: 10.1088/0022-3727/40/19/053 CrossRefGoogle Scholar
  35. 35.
    Nesterov A, Loffler F, Cheng YC, Torralba G, Konig K, Hausmann M, Lindenstruth V, Stadler V, Bischoff FR, Breitling F (2010) Characterization of triboelectrically charged particles deposited on dielectric surfaces. J Phys D Appl Phys 43(16):0022–3727. doi: 10.1088/0022-3727/43/16/165301 Google Scholar
  36. 36.
    Beyer M, Felgenhauer T, Bischoff FR, Breitling F, Stadler V (2006) A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials 27(18):3505–3514. doi: 10.1016/j.biomaterials.2006.01.046 CrossRefGoogle Scholar
  37. 37.
    Stadler V, Kirmse R, Beyer M, Breitling F, Ludwig T, Bischoff FR (2008) PEGMA/MMA copolymer graftings: Generation, protein resistance, and a hydrophobic domain. Langmuir 24(15):8151–8157. doi: 10.1021/La800772m CrossRefGoogle Scholar
  38. 38.
    Nesterov A, Dörsam E, Cheng Y-C, Schirwitz C, Märkle F, Löffler F, König K, Stadler V, Bischoff R, Breitling F (2010) Peptide arrays with a chip. In: Uttamchandani, Mahesh Yao, Shao Q (ed) Small molecule microarrays: methods and protocols, vol 669. Humana Press, New York, pp 109–124 Google Scholar
  39. 39.
    Jacobs HO, Whitesides GM (2001) Submicrometer patterning of charge in thin-film electrets. Science 291(5509):1763–1766CrossRefGoogle Scholar
  40. 40.
    Bieri NR, Chung J, Haferl SE, Poulikakos D, Grigoropoulos CP (2003) Microstructuring by printing and laser curing of nanoparticle solutions. Appl Phys Lett 82(20):3529–3531. doi: 10.1063/1.1575502 CrossRefGoogle Scholar
  41. 41.
    Wagner J, Loffler F, Konig K, Fernandez S, Nesterov-Muller A, Breitling F, Bischoff FR, Stadler V, Hausmann M, Lindenstruth V (2010) Quality analysis of selective microparticle deposition on electrically programmable surfaces. Rev Sci Instrum 81(7):073703. doi: 10.1063/1.3456986 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Felix F. Loeffler
    • 1
  • Yun-Chien Cheng
    • 3
  • Bastian Muenster
    • 1
  • Jakob Striffler
    • 1
  • Fanny C. Liu
    • 1
  • F. Ralf Bischoff
    • 2
  • Edgar Doersam
    • 3
  • Frank Breitling
    • 1
  • Alexander Nesterov-Mueller
    • 1
  1. 1.Karlsruhe Institute of Technology, Institute of Microstructure TechnologyEggenstein-LeopoldshafenGermany
  2. 2.German Cancer Research CenterChip Based Peptide LibrariesHeidelbergGermany
  3. 3.Institute of Printing Science and TechnologyDarmstadtGermany

Personalised recommendations