The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses

  • Ian Marison
  • Siobhán Hennessy
  • Róisín Foley
  • Moira Schuler
  • Senthilkumar Sivaprakasam
  • Brian Freeland
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 132)


With increasing pressure from regulatory authorities on industry to develop processes embracing process analytical technology (PAT) initiatives, there is a growing demand to establish reliable tools and systems capable of meeting this need. With regard to monitoring and control of bioprocesses, this need translates to a search for robust instrumentation capable of monitoring the critical process parameters in real time. The application of such technologies at all stages of the process, from the initial R&D phase to process optimisation and production, enhances process understanding and paves the way for the development of control platforms. An examination of the PAT concept and selected tools (NIR, MIR, Raman, dielectric spectroscopy and calorimetry) are presented here. A description of each tool is given, with particular emphasis on the nature of the signal produced and how these relate to measurements of biomass, metabolites and product. A description of the signal processing that is necessary to gain meaningful results from the different tools is also given, together with online data reconciliation techniques based on mass and energy balances. Many techniques such as those based on vibrational spectroscopy are of particular interest, since they are capable of monitoring several critical process parameters which are typically controlled in a bioprocess. A window of application for each of the techniques, when used in the area of bioprocessing, is suggested based on their uses and inherent limitations.

Graphical Abstract


Bioprocess control Bioprocess monitoring Calorimetry Critical process parameters Data reconciliation PAT Spectroscopy 


  1. 1.
    U.S. FDA (2004) Pharmaceutical cGMPs for the 21st century—A risk-based approach—final reportGoogle Scholar
  2. 2.
    U.S. FDA (2006) Guidance for industry, Q8 pharmaceutical developmentGoogle Scholar
  3. 3.
    U.S. FDA (2004) Guidance for industry PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assuranceGoogle Scholar
  4. 4.
    Baughmann E (2005) Process analytical chemistry: introduction and historical. In: Bakeev KA (ed) Process analytical technology: spectroscopic tools and implementation strategies for chemical and pharmaceutical industries. Blackwell, OxfordGoogle Scholar
  5. 5.
    von Stockar U, Maskow T, Liu J, Marison IW, Patiño R (2006) Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol 121:517–533CrossRefGoogle Scholar
  6. 6.
    Winkelmann M, Hüttl R, Wolf G (2004) Application of batch-calorimetry for the investigation of microbial activity. Thermochimica Acta 415:75–82Google Scholar
  7. 7.
    von Stockar U, Marison IW (1991) Large-scale calorimetry and biotechnology. Thermochimica Acta 193:215–242Google Scholar
  8. 8.
    Birou B, Marison IW, Stockar UV (1987) Calorimetric investigation of aerobic fermentations. Biotechnol Bioeng 30:650–660CrossRefGoogle Scholar
  9. 9.
    Buttiglieri G, Bouju H, Malpei F, Ficara E, Canziani R (2010) Microcalorimetry: a tool to investigate aerobic, anoxic and anaerobic autotrophic and heterotrophic biodegradation. Biochem Eng J 52:25–32CrossRefGoogle Scholar
  10. 10.
    Voisard D, von Stockar U, Marison IW (2002) Quantitative calorimetric investigation of fed-batch cultures of Bacillus sphaericus 1593 M. Thermochimica Acta 394:99–111Google Scholar
  11. 11.
    von Stockar U, Marison I (1989) The use of calorimetry in biotechnology, bioprocesses and engineering. Springer, Berlin/Heidelberg, 40:93–136Google Scholar
  12. 12.
    Redl B, Tiefenbrunner F (1981) Determination of hydrolytic activities in wastewater systems by microcalorimetry. Water Res 15:87–90CrossRefGoogle Scholar
  13. 13.
    Wadsö I (1986) Bio-calorimetry. Trends Biotechnol 4:45–51CrossRefGoogle Scholar
  14. 14.
    Grob B, Riesen R (1987) Reaction calorimetry for the development of chemical reactions. Thermochimica Acta 114:83–90Google Scholar
  15. 15.
    Marison IW, von Stockar U (1985) A novel bench-scale calorimeter for biological process development work. Thermochimica Acta 85:496Google Scholar
  16. 16.
    Marison I, Liu JS, Ampuero S, Von Stockar U, Schenker B (1998) Biological reaction calorimetry: development of high sensitivity bio-calorimeters. Thermochimica Acta 309:157–173Google Scholar
  17. 17.
    Zentgraf B (1991) Bench-scale calorimetry in biotechnology Thermochimica Acta 193:243–251Google Scholar
  18. 18.
    García-Payo MC, Ampuero S, Liu JS, Marison IW, von Stockar U (2002) The development and characterization of a high resolution bio-reaction calorimeter for weakly exothermic cultures. Thermochimica Acta 391:25–39Google Scholar
  19. 19.
    von Stockar U, Larsson C, Marison IW, Cooney MJ (1995) Calorimetry of dual limitations in yeast cultures. Thermochimica Acta 250:247–258Google Scholar
  20. 20.
    Aulenta F, Bassani C, Ligthart J, Majone M, Tilche A (2002) Calorimetry: a tool for assessing microbial activity under aerobic and anoxic conditions. Water Res 36:1297–1305CrossRefGoogle Scholar
  21. 21.
    Birou B (1986) Etude De La Chaleur Dégagée Par Des Cultures Microbiennes Dans Un Fermenteur De Laboratoire. E.P.F.L., LausanneGoogle Scholar
  22. 22.
    Marison I, Linder M, Schenker B (1998) High-sensitive heat-flow calorimetry. Thermochimica Acta 310:43-46Google Scholar
  23. 23.
    Liu J, Marison IW, von Stockar U (2001) Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri. Biotechnol Bioeng 75:170–180CrossRefGoogle Scholar
  24. 24.
    Daverio E, Spanjers H, Bassani C, Ligthart J, Nieman H (2003) Calorimetric investigation of anaerobic digestion: biomass adaptation and temperature effect. Biotechnol Bioeng 82:499–505CrossRefGoogle Scholar
  25. 25.
    Janssen M, Patiño R, von Stockar U (2005) Application of bench-scale biocalorimetry to photoautotrophic cultures. Thermochimica Acta 435:18–27Google Scholar
  26. 26.
    Janssen M, Wijffels R, von Stockar U (2007) Biocalorimetric monitoring of photoautotrophic batch cultures. Thermochimica Acta 458:54–64Google Scholar
  27. 27.
    Randolph TW, Marison IW, Martens DE, VonStockar U (1990) Calorumetric control of fed-batch fermentations. Biotechnol Bioeng 36:678–684CrossRefGoogle Scholar
  28. 28.
    von Stockar U, Duboc P, Menoud L, Marison IW (1997) On-line calorimetry as a technique for process monitoring and control in biotechnology. Thermochimica Acta 300:225–236Google Scholar
  29. 29.
    Voisard D, Claivaz C, Menoud L, Marison IW, von Stockar U (1998) Use of reaction calorimetry to monitor and control microbial cultures producing industrially relevant secondary metabolites. Thermochimica Acta 309:87–96Google Scholar
  30. 30.
    Liu J, Marison I, von Stockar U (1999) Anaerobic calorimetry of the growth of Lactobacillus helveticus using a highly sensitive bio-RCl. Biochimica et Biophysica Acta 56:1191–1195Google Scholar
  31. 31.
    Patiño R, Janssen M, von Stockar U (2007) A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques. Biotechnol Bioeng 96:757–767CrossRefGoogle Scholar
  32. 32.
    Voisard D, Pugeaud P, Kumar AR, Jenny K, Jayaraman K, Marison IW, von Stockar U (2002) Development of a large-scale biocalorimeter to monitor and control bioprocesses. Biotechnol Bioeng 80:125–138CrossRefGoogle Scholar
  33. 33.
    Türker M (2004) Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations. Thermochimica Acta 419:73–81Google Scholar
  34. 34.
    Schubert T, Breuer U, Harms H, Maskow T (2007) Calorimetric bioprocess monitoring by small modifications to a standard bench-scale bioreactor. J Biotechnol 130:24–31CrossRefGoogle Scholar
  35. 35.
    Sivaprakasam S, Schuler M, Hama A, Hughes K, Marison I (2011) Biocalorimetry as a process analytical technology process analyser; robust in-line monitoring and control of aerobic fed-batch cultures of crabtree-negative yeast cells. J Therm Anal Calorim 104:75–85Google Scholar
  36. 36.
    Schuler M, Sivaprakasam S, Freeland B, Hama A, Hughes K, Marison I Investigation of the potential of biocalorimetry as a process analytical technology (PAT) tool for monitoring and control of Crabtree-negative yeast cultures. Appl Microbiol Biotechnol :1–10Google Scholar
  37. 37.
    Biener R, Steinkämper A, Hofmann J (2010) Calorimetric control for high cell density cultivation of a recombinant Escherichia coli strain. J Biotechnol 146:45–53CrossRefGoogle Scholar
  38. 38.
    Biener R, Steinkämper A, Horn T (2012) Calorimetric control of the specific growth rate during fed-batch cultures of Saccharomyces cerevisiae. J Biotechnol 160:195–201CrossRefGoogle Scholar
  39. 39.
    van Kleeff BHA, Kuenen JG, Honderd G, Heijnen JJ (1998) Using heat-flow measurements for the feed control of a fed batch fermentation of Saccharomyces cerevisiae. Thermochimica Acta 309:175–180Google Scholar
  40. 40.
    Kirkpatrick DS, McGinness JE, Moorhead WD, Corry PM, Proctor PH (1978) High-frequency dielectric spectroscopy of concentrated membrane suspensions. Biophys J 24:243–245CrossRefGoogle Scholar
  41. 41.
    Justice C, Brix A, Freimark D, Kraume M, Pfromm P, Eichenmueller B, Czermak P (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29:391–401CrossRefGoogle Scholar
  42. 42.
    FDA (2004) Guidance for industry PAT—a framework for innovative pharmaceutical development, Manufacturing and Quality AssuranceGoogle Scholar
  43. 43.
    Soley A, Lecina M, Gamez X, Cairo JJ, Riu P, Rosell X, Bragos R, Godia F (2005) On-line monitoring of yeast cell growth by impedance spectroscopy. J Biotechnol 118:398–405Google Scholar
  44. 44.
    Nicholson DJ, Kell DB, Davey CL (1996) Deconvolution of the dielectric spectra of microbial cell suspensions using multivariate calibration and artificial neural networks. Bioelectrochem Bioenerget 39:185–193CrossRefGoogle Scholar
  45. 45.
    Davey HM, Davey CL, Woodward AM, Edmonds AN, Lee AW, Kell DB (1996) Oscillatory, stochastic and chaotic growth rate fluctuations in permittistatically controlled yeast cultures. BioSystems 39:43–61CrossRefGoogle Scholar
  46. 46.
    Claes JE, Van Impe JF (1999) On-line estimation of the specific growth rate based on viable biomass measurements: experimental validation. Bioprocess Biosystems Eng 21:389–395Google Scholar
  47. 47.
    Davey CL, Kell DB (1998) The influence of electrode polarisation on dielectric spectra, with special reference to capacitive biomass measurements: (II) Reduction in the contribution of electrode polarisation to dielectric spectra using a two-frequency method. Bioelectrochem Bioenerg 46:105–114CrossRefGoogle Scholar
  48. 48.
    Davey CL, Kell DB (1998) The influence of electrode polarisation on dielectric spectra, with special reference to capacitive biomass measurements—I. Quantifying the effects on electrode polarisation of factors likely to occur during fermentations. Bioelectrochem Bioenerg 46:91–103CrossRefGoogle Scholar
  49. 49.
    Davey CL (1993) The theory of the β-dielectric dispersion and its use in the estimation of cellular biomass. Aber instruments handbook pp. 38Google Scholar
  50. 50.
    Davey CL, Davey HM, Kell DB, Todd RW (1993) Introduction to the dielectric estimation of cellular biomass in real-time, with special emphasis on measurements at high-volume fractions. Anal Chim Acta 279:155–161CrossRefGoogle Scholar
  51. 51.
    Davey CL, GH Markx, Kell DB (1993) On the dielectric method of monitoring cellular viability. Pure Appl Chem 65:1921–1926Google Scholar
  52. 52.
    November EJ, Van Impe JF (2000) Evaluation of on-line viable biomass measurements during fermentations of Candida utilis. Bioprocess Biosystems Eng 23:473–477Google Scholar
  53. 53.
    Maskow T, Olomolaiye D, Breuer U, Kemp R (2004) Flow calorimetry and dielectric spectroscopy to control the bacterial conversion of toxic substrates into polyhydroxyalcanoates. Biotechnol Bioeng 85:547–552CrossRefGoogle Scholar
  54. 54.
    Neves AA, Pereira DA, Vieira LM, Menezes JC (2000) Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol 84:45–52CrossRefGoogle Scholar
  55. 55.
    Ferreira AP, Vieira LM, Cardoso JP, Menezes JC (2005) Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J Biotechnol 116:403–409CrossRefGoogle Scholar
  56. 56.
    Clementschitsch F, Jürgen K, Florentina P, Karl B (2005) Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations. J Biotechnol 120:183–196CrossRefGoogle Scholar
  57. 57.
    Kaiser C, Pototzki T, Ellert A, Luttmann R (2008) Applications of PAT-process analytical technology in recombinant protein processes with Escherichia coli. Eng Life Sci 8:132–138Google Scholar
  58. 58.
    Maskow T, Röllich A, Fetzer I, Ackermann J, Harms H (2008) On-line monitoring of lipid storage in yeasts using impedance spectroscopy. J Biotechnol 135:64–70CrossRefGoogle Scholar
  59. 59.
    Maskow T, Röllich A, Fetzer I, Yao J, Harms H (2008) Observation of non-linear biomass–capacitance correlations: Reasons and implications for bioprocess control. Biosens Bioelectron 24:123–128Google Scholar
  60. 60.
    Patel PM, Bhat A, Markx GH (2008) A comparative study of cell death using electrical capacitance measurements and dielectrophoresis. Enzyme Microb Technol 43:523–530CrossRefGoogle Scholar
  61. 61.
    Xiong Z, Guo M, Guo Y, Chu J, Zhuang Y, Zhang S (2008) Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. J Biosci Bioeng 105:409–413Google Scholar
  62. 62.
    Dabros M, Dennewald D, Currie D, Lee M, Todd R, Marison I, von Stockar U (2009) Cole–cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass. Bioprocess Biosystems Eng 32:161–173Google Scholar
  63. 63.
    Dabros M, Amrhein M, Bonvin D, Marison IW, von Stockar U (2009) Data reconciliation of concentration estimates from mid-infrared and dielectric spectral measurements for improved on-line monitoring of bioprocesses. Biotechnol Prog 25:578–588CrossRefGoogle Scholar
  64. 64.
    Dabros M, Schuler M, Marison I (2010) Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass. Bioprocess Biosystems Eng 33:1109–1118Google Scholar
  65. 65.
    Tibayrenc P, Preziosi-Belloy L, Ghommidh C (2011) On-line monitoring of dielectrical properties of yeast cells during a stress-model alcoholic fermentation. Process Biochem 46:193–201Google Scholar
  66. 66.
    Markx GH, Davey CL, Kell DB (1991) To what extent is the magnitude of the Cole–Cole-alpha of the beta-dielectric dispersion of cell-suspensions explicable in terms of the cell-size distribution. Bioelectrochem Bioenerg 25:195–211CrossRefGoogle Scholar
  67. 67.
    Guan Y, Evans PM, Kemp RB (1998) Specific heat flow rate: an on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol Bioeng 58:464–477CrossRefGoogle Scholar
  68. 68.
    Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63:187–198CrossRefGoogle Scholar
  69. 69.
    Ducommun P, Kadouri A, von Stockar U, Marison IW (2002) On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng 77:316–323CrossRefGoogle Scholar
  70. 70.
    Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, von Stockar U, Marison IW (2001) On-line determination of animal cell concentration. Biotechnol Bioeng 72:515–522CrossRefGoogle Scholar
  71. 71.
    Cannizzaro C, Gugerli R, Marison I, von Stockar U (2003) On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng 84:597–610CrossRefGoogle Scholar
  72. 72.
    Negrete A, Esteban G, Kotin R (2007) Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy. Appl Microbiol Biotechnol 76:761–772CrossRefGoogle Scholar
  73. 73.
    Ansorge S, Esteban G, Schmid G (2007) On-line monitoring of infected Sf-9 insect cell cultures by scanning permittivity measurements and comparison with off-line biovolume measurements. Cytotechnology 55:115–124CrossRefGoogle Scholar
  74. 74.
    Bonincontro A, Risuleo G (2003) Dielectric spectroscopy as a probe for the investigation of conformational properties of proteins. Spectrochim Acta A 59:2677–2684Google Scholar
  75. 75.
    Castro-Giráldez M, Fito PJ, Rosa MD, Fito P (2011) Application of microwaves dielectric spectroscopy for controlling osmotic dehydration of kiwifruit (Actinidia deliciosa cv Hayward). Innovative Food Sci Emer Tech 12:623–627Google Scholar
  76. 76.
    Pohl HA, Kaler K, Pollock K (1981) The continuous positive and negative dielectrophoresis of microorganisms. J Biol Phys 9:67–86CrossRefGoogle Scholar
  77. 77.
    Kim T, Kang J, Lee J, Yoon J (2011) Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Water Res 45:4615–4622CrossRefGoogle Scholar
  78. 78.
    Davey CL, Markx GH, Kell DB (1993) On the dielectric method of monitoring cellular viability. Pure Appl Chem 65:1921–1926CrossRefGoogle Scholar
  79. 79.
    Gastrock G, Lemke K, Metze J (2001) Sampling and monitoring in bioprocessing using microtechniques. Rev Mol Biotechnol 82:123–135Google Scholar
  80. 80.
    Krommenhoek EE, Gardeniers JGE, Bomer JG, Van den Berg A, Li X, Ottens M, van der Wielen LAM, van Dedem GWK, Van Leeuwen M, van Gulik WM, Heijnen JJ (2006) Monitoring of yeast cell concentration using a micromachined impedance sensor. Sensor Actuat B-Chem 115:384–389Google Scholar
  81. 81.
    Ciureanu M, Levadoux W, Goldstein S (1997) Electrical impedance studies on a culture of a newly discovered strain of streptomyces. Enzyme Microb Technol 21:441–449CrossRefGoogle Scholar
  82. 82.
    Asami K, Yonezawa T (1996) Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. Biophys J 71:2192–2200CrossRefGoogle Scholar
  83. 83.
    Ducommun P, Ruffieux P, Furter M, Marison I, von Stockar U (2000) A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. J Biotechnol 78:139–147CrossRefGoogle Scholar
  84. 84.
    Ansorge S, Lanthier S, Transfiguracion J, Henry O, Kamen A (2011) Monitoring lentiviral vector production kinetics using online permittivity measurements. Biochem Eng J 54:16–25CrossRefGoogle Scholar
  85. 85.
    Maskow T, Kiesel B, Schubert T, Yong Z, Harms H, Yao J (2010) Calorimetric real time monitoring of lambda prophage induction. J Virol Methods 168:126–132CrossRefGoogle Scholar
  86. 86.
    Markx GH, Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microb Technol 25:161–171CrossRefGoogle Scholar
  87. 87.
    Asami K (2002) Characterization of biological cells by dielectric spectroscopy. J Non-Cryst Solids 305:268–277CrossRefGoogle Scholar
  88. 88.
    Carvell J, Poppleton J, Dowd J (2006) Measurements and control of viable cell density in cGMP manufacturing processes. Bioprocess J 5:58–63Google Scholar
  89. 89.
    Kiviharju K, Salonen K, Moilanen U, Eerikäinen T (2008) Biomass measurement online: the performance of in situ measurements and software sensors. Ind Microbiol Biotechnol 35:657–665Google Scholar
  90. 90.
    Krairak S, Yamamura K, Nakajima M, Shimizu H, Shioya S (1999) On-line monitoring of fungal cell concentration by dielectric spectroscopy. J Biotechnol 69:115–123CrossRefGoogle Scholar
  91. 91.
    Roche Diagnostics GmbH (2009) The xCELLigence system—new horizons in cellular technology.
  92. 92.
    Asami K, Gheorghiu E, Yonezawa T (1999) Real-time monitoring of yeast cell division by dielectric spectroscopy. Biophys J 76:3345–3348CrossRefGoogle Scholar
  93. 93.
    Hofmann MC, Ellersiek D, Kensy F, Büchs J, Mokwa W, Schnakenberg U (2005) Galvanic decoupled sensor for monitoring biomass concentration during fermentation processes. Sensors Actuators B Chem 111–112:370–375CrossRefGoogle Scholar
  94. 94.
    Hofmann MC, Kensy F, Buechs J, Mokwa W, Schnakenberg U (2005) Transponder-based sensor for monitoring electrical properties of biological cell solutions. J Biosci Bioeng 100:172–177Google Scholar
  95. 95.
    Kim Y, Park J, Jung H (2009) An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sensors Actuators B Chem 138:270–277CrossRefGoogle Scholar
  96. 96.
    Hofmann MC, Funke M, Buechs J, Mokwa W, Schnakenberg U (2010) Development of a four electrode sensor array for impedance spectroscopy in high content screenings of fermentation processes. Sensors Actuators B Chem 147:93–99CrossRefGoogle Scholar
  97. 97.
    Carvell, J. and K. Turner (2003) New applications and methods utilizing radio-frequency impedance measurements for improving yeast management. Master Brewers Assoc Am 40:30–38Google Scholar
  98. 98.
    Vojinovic V, Cabral JMS, Fonseca LP (2006) Real-time bioprocess monitoring. Part I In Situ Sens 114:1083–1091Google Scholar
  99. 99.
    O’Reilly BT, Hilton MD (2006) Improved fed-batch through maintenance of specific productivity by indexing the glucose feed rate to capacitance-measured biomass in Pichia pastoris, BIOT 443: Upstream Processing: microbial fermentation process development. Advances in Process Engineering, San FranciscoGoogle Scholar
  100. 100.
    Carvell J, Dowd J (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50:35–48CrossRefGoogle Scholar
  101. 101.
    Günzler H, Gremlich H (2002) Spectroscopy in near- and far-infrared as well as related methods. In: Anonymous IR spectroscopy: an introduction. Wilcy-VCH, Weinheim, p 309Google Scholar
  102. 102.
    Brown JM (1998) Molecular spectroscopy. Oxford University Press, New YorkGoogle Scholar
  103. 103.
    Schenk J, Dabros M, Marison IW, von Stockar U (2005) Simple and quick in situ calibration of a FTIR instrument to control fed-batch fermentations of Pichia pastoris. J Biotechnol 118:S37–S37Google Scholar
  104. 104.
    Schenk J, Marison IW, von Stockar U (2007) Simplified Fourier-transform mid-infrared spectroscopy calibration based on a spectra library for the on-line monitoring of bioprocesses. Analytica Chimica Acta 591:132–140Google Scholar
  105. 105.
    Schenk J, Viscasillas C, Marison IW, von Stockar U (2008) On-line monitoring of nine different batch cultures of E. coli by mid-infrared spectroscopy, using a single spectra library for calibration. J Biotechnol 134:93–102CrossRefGoogle Scholar
  106. 106.
    Gabriele R (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57:1109–1143CrossRefGoogle Scholar
  107. 107.
    Simpson MB (2005) Near-infrared spectroscopy for process analytical chemistry: theory, technology and implementation. In: Bakeev KA (ed) Process analytical technology: spectroscopic tools and implementation for the chemical and pharmaceutical industries. Blackwell, Oxford, p 39Google Scholar
  108. 108.
    Singh R (2002) C. V. Raman and the discovery of the Raman effect. Phys Perspect 4:399–420Google Scholar
  109. 109.
    Das RS, Agrawal YK Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc 57:163–176Google Scholar
  110. 110.
    Wartewig S, Nuebert RHH (2005) Pharmaceutical applications of mid-IR and Raman spectroscopy. Adv Drug Deliver Rev 57:1144–1170Google Scholar
  111. 111.
    Chase B (1994) A new generation of Raman instrumentation. Appl Spectrosc 48:14A–19ACrossRefGoogle Scholar
  112. 112.
    Massart DL, Vandeginste BGM, Deming BM, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. data handling in science and technology. Elsevier, AmsterdamGoogle Scholar
  113. 113.
    Brown, S. D., (2001) A Short Primer on Chemometrics for Spectroscopists. Educational Article. Accessed 16 Nov 2012
  114. 114.
    Kramer R (1998) Chemometric techniques for quantitative analysis. Dekker, New York, pp 216Google Scholar
  115. 115.
    Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777CrossRefGoogle Scholar
  116. 116.
    Naes T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR, Chichester, pp 344Google Scholar
  117. 117.
    Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J (2006) OPLS methodology for analysis of pre-processing effects on spectroscopic data. Chemom Intellig Lab Syst 84:153–158CrossRefGoogle Scholar
  118. 118.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639Google Scholar
  119. 119.
    Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221CrossRefGoogle Scholar
  120. 120.
    Henriques J, Buziol S, Stocker E, Voogd A, Menezes J (2010) Monitoring mammalian cell cultivations for monoclonal antibody production using near-infrared spectroscopy. Adv Biochem Eng Biotechnol 116:73–97Google Scholar
  121. 121.
    Landgrebe D, Haake C, Höpfner T, Beutel S, Hitzmann B, Scheper T, Rhiel M, Reardon K (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biot 88:11–22Google Scholar
  122. 122.
    ASTM International (2012) Standard Practices for Infrared Multivariate Quantitative Analysis, ASTM Standard 1655–05. doi:10.1520/E1655-05R12, West Conshohocken, PA
  123. 123.
    Brereton RG (1997) Multilevel multifactor designs for multivariate analysis. Analyst 122:1521–1529Google Scholar
  124. 124.
    Petiot E, Bernard-Moulin P, Magadoux T, Gény C, Pinton H, Marc A (2010) In situ quantification of microcarrier animal cell cultures using near-infrared spectroscopy. Process Biochem 45:1427–1431Google Scholar
  125. 125.
    Rhiel MH, Amrhein M, Marison IW, von Stockar U (2002) The influence of correlated calibration samples on the prediction performance of multivariate models based on mid- infrared spectra of animal cell cultures. Anal Chem 74:5227–5236CrossRefGoogle Scholar
  126. 126.
    Petersen N, Ödman P, Padrell AEC, Stocks S, Lantz AE, Gernaey KV (2010) In situ near infrared spectroscopy for analyte-specific monitoring of glucose and ammonium in streptomyces coelicolor fermentations. Biotechnol Prog 26:263–271Google Scholar
  127. 127.
    Brereton RG (2007) Applied chemometrics for scientists. Wiley, ChichesterCrossRefGoogle Scholar
  128. 128.
    Munoz JA, Brereton RG (1998) Partial factorial designs for multivariate calibration: extension to seven levels and comparison of strategy. Chemometrics Intell Lab Syst 43:89–105CrossRefGoogle Scholar
  129. 129.
    Rhiel M, Ducommun P, Bolzonella I, Marison I, von Stockar U (2002) Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements. Biotechnol Bioeng 77:174–185CrossRefGoogle Scholar
  130. 130.
    Doak DL, Phillips JA (1999) In situ monitoring of an Escherichia coli fermentation using a diamond composition ATR probe and mid-infrared spectroscopy. Biotechnol Prog 15:529–539CrossRefGoogle Scholar
  131. 131.
    Franco VG, Perín JC, Mantovani VE, Goicoechea HC (2006) Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection. Talanta 68:1005–1012CrossRefGoogle Scholar
  132. 132.
    Mazarevica G, Diewok J, Baena JR, Rosenberg E, Lendl B (2004) On-line fermentation monitoring by mid-infrared spectroscopy. Appl Spectrosc 58:804–810CrossRefGoogle Scholar
  133. 133.
    Roychoudhury P, Harvey LM, McNeil B (2006) At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy. Analytica Chimica Acta 561:218–224Google Scholar
  134. 134.
    Dabros M, Amrhein M, Bonvin D, Marison IW, von Stockar U (2007) Data reconciliation of mid-infrared and dielectric spectral measurements for improved on-line monitoring of bioprocesses. Biotechnol Prog 25(2):578–588Google Scholar
  135. 135.
    Fayolle P, Picque D, Corrieu G (2000) On-line monitoring of fermentation processes by a new remote dispersive middle-infrared spectrometer. Food Control 11:291–296Google Scholar
  136. 136.
    Kornmann H, Valentinotti S, Duboc P, Marison I, von Stockar U (2004) Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy. J Biotechnol 113:231–245CrossRefGoogle Scholar
  137. 137.
    Schenk J, Marison IW, von Stockar U (2007) A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. J Biotechnol 128:344–353Google Scholar
  138. 138.
    Cervera AE, Petersen N, Lantz AE, Larsen A, Gernaey KV (2009) Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnol Progr 25:1561–1581Google Scholar
  139. 139.
    Crowley J, Arnold SA, Wood N, Harvey LM, McNeil B (2005) Monitoring a high cell density recombinant Pichia pastoris fed-batch bioprocess using transmission and reflectance near infrared spectroscopy. Enzyme Microb Tech 36:621–628Google Scholar
  140. 140.
    Rodrigues L, Vieira L, Cardoso J, Menezes J (2008) The use of NIR as a multi-parametric in situ monitoring technique in filamentous fermentation systems. Talanta 75:1356Google Scholar
  141. 141.
    Arnold SA, Crowley J, Woods N, Harvey LM, McNeill B (2003) In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation. Biotechnol Bioeng 84:13–19CrossRefGoogle Scholar
  142. 142.
    Roychoudhury P, O’Kennedy R, McNeil B, Harvey LM (2007) Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. Anal Chim Acta 590:110–117CrossRefGoogle Scholar
  143. 143.
    Vaccari G, Dosi E, Campi AL, Mantovani G, Gonzalez-Vara y RA, Matteuzzi D (1994) A near-infrarod spectroscopy technique for the control of fermentation processes: an application to lactic acid fermentation. Biotechnol Bioeng 43:913–917Google Scholar
  144. 144.
    González-Vara y RA, Vaccari G, Dosi E, Trilli A, Rossi M, Matteuzzi D (2000) Enhanced production of L-(+)-lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion-exchange resins and cross-flow filtration in a fully automated pilot plant controlled via NIR. Biotechnol Bioeng 67:147–156Google Scholar
  145. 145.
    Cimander C, Mandenius C (2002) Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling. J Chem Technol Biotechnol 77:1157–1168CrossRefGoogle Scholar
  146. 146.
    Gomy C, Jouan M, Dao NQ (1988) Methode d’analyse quantitative par spectrometrie Raman-laser associee aux fibres optiques pour le suivi d’une fermentation alcoolique. Anal Chim Acta 215:211–221CrossRefGoogle Scholar
  147. 147.
    Shaw AD, Kaderbhai N, Jones A, Woodward AM, Goodacre R, Rowland JJ, Kell DB (1999) Noninvasive, on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive Raman spectroscopy and chemometrics. Appl Spectrosc 53:1419–1428Google Scholar
  148. 148.
    Cannizzaro C, Rhiel M, Marison I, von Stockar U (2003) On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng 83:668–680CrossRefGoogle Scholar
  149. 149.
    Lee HLT, Boccazzi P, Gorret N, Ram RJ, Sinskey AJ (2004) In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vib Spectrosc 35:131–137Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ian Marison
    • 1
  • Siobhán Hennessy
    • 1
  • Róisín Foley
    • 1
  • Moira Schuler
    • 1
  • Senthilkumar Sivaprakasam
    • 1
  • Brian Freeland
    • 1
  1. 1.Dublin City UniversityDublinIreland

Personalised recommendations