Sources of Mesenchymal Stem Cells: Current and Future Clinical Use

  • Michela Pozzobon
  • Martina Piccoli
  • Paolo De Coppi
Chapter

Abstract

Despite the lack of international criteria defining the biological properties and surface markers that must possess mesenchymal stem cells (MSC), it become of paramount importance to know the different sources and the clinical applications of these promising stem cells. In this chapter we overview the most important sources of MSC from the inner cell mass of the blastocyst to the adult source and landing to the induced pluripotent stem cells (iPS). Following the criteria defining MSC properties so far observed, we drew the attention on the role of MSC as tool for regenerative medicine and therapeutic purposes.

Graphical Abstract

Keywords

Adult MSC Amniotic fluid Adipose tissue Cord blood iPS Therapeutic applications of MSC 

References

  1. 1.
    Aasen T, Izpisua Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5(2):371–382Google Scholar
  2. 2.
    Anokye-Danso F, Trivedi CM et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388Google Scholar
  3. 3.
    Arpornmaeklong P, Brown SE et al (2009) Phenotypic characterization, osteoblastic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells. Stem Cells Dev 18(7):955–968Google Scholar
  4. 4.
    Barberi T, Willis LM et al (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med 2(6):e161Google Scholar
  5. 5.
    Bilousova G, Jun du H et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29(2):206–216Google Scholar
  6. 6.
    Bossolasco P, Montemurro T et al (2006) Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res 16(4):329–336Google Scholar
  7. 7.
    Brooke G, Tong H et al (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 17(5):929–940Google Scholar
  8. 8.
    Broxmeyer HE, Cooper S et al (2005) Identification of a massive reserve of hematopoietic progenitors in mice. Stem Cells Dev 14(2):105–110Google Scholar
  9. 9.
    Broxmeyer HE, Srour E et al (2006) Cord blood stem and progenitor cells. Methods Enzymol 419:439–473Google Scholar
  10. 10.
    Burt RK, Loh Y et al (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299(8):925–936Google Scholar
  11. 11.
    Campagnoli C, Roberts IA et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402Google Scholar
  12. 12.
    Cananzi M, Atala A et al (2009) Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 18(Suppl 1):17–27Google Scholar
  13. 13.
    Chang CM, Kao CL et al (2007) Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun 357(2):414–420Google Scholar
  14. 14.
    Cho HJ, Lee CS et al (2010) Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 116(3):386–395Google Scholar
  15. 15.
    Cho PS, Messina DJ et al (2008) Immunogenicity of umbilical cord tissue derived cells. Blood 111(1):430–438Google Scholar
  16. 16.
    Crisostomo PR, Markel TA et al (2008) Surgically relevant aspects of stem cell paracrine effects. Surgery 143(5):577–581Google Scholar
  17. 17.
    De Coppi P, Bartsch G Jr et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106Google Scholar
  18. 18.
    De Coppi P, Callegari A et al (2007) Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 177(1):369–376Google Scholar
  19. 19.
    Derzic S, Slone V et al (2005) IL-2-activated cord blood mononuclear cells. Cytotherapy 7(5):408–416Google Scholar
  20. 20.
    Dimmeler S, Zeiher AM (2009) Cell therapy of acute myocardial infarction: open questions. Cardiology 113(3):155–160Google Scholar
  21. 21.
    Ditadi A, de Coppi P et al (2009) Human and murine amniotic fluid c-Kit + Lin- cells display hematopoietic activity. Blood 113(17):3953–3960Google Scholar
  22. 22.
    Eyckmans J, Luyten FP (2006) Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng 12(8):2203–2213Google Scholar
  23. 23.
    Fan CG, Tang FW et al (2005) Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 14(5):311–321Google Scholar
  24. 24.
    Fehrer C, Lepperdinger G (2005) Mesenchymal stem cell aging. Exp Gerontol 40(12):926–930Google Scholar
  25. 25.
    Fenno LE, Ptaszek LM et al (2008) Human embryonic stem cells: emerging technologies and practical applications. Curr Opin Genet Dev 18(4):324–329Google Scholar
  26. 26.
    Friedenstein AJ, Chailakhyan RK et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340Google Scholar
  27. 27.
    Friedenstein AJ, Gorskaja JF et al (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274Google Scholar
  28. 28.
    Fukuchi Y, Nakajima H et al (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22(5):649–658Google Scholar
  29. 29.
    Gang EJ, Jeong JA et al (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 22(4):617–624Google Scholar
  30. 30.
    Garcia-Olmo D, Herreros D et al (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52(1):79–86Google Scholar
  31. 31.
    Garcia-Olmo D, Herreros D et al (2009) Treatment of enterocutaneous fistula in Crohn’s Disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. Int J Colorectal Dis 24(1):27–30Google Scholar
  32. 32.
    Granero-Molto F, Weis JA et al (2008) Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther 8(3):255–268Google Scholar
  33. 33.
    Gronthos S, Franklin DM et al (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63Google Scholar
  34. 34.
    Haase A, Olmer R et al (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5(4):434–441Google Scholar
  35. 35.
    Heng BC, Cao T et al (2004) Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 19(9):1379–1394Google Scholar
  36. 36.
    Heng BC, Haider H et al (2004) Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res 62(1):34–42Google Scholar
  37. 37.
    Hilberg F, Wagner EF (1992) Embryonic stem (ES) cells lacking functional c-jun: consequences for growth and differentiation, AP-1 activity and tumorigenicity. Oncogene 7(12):2371–2380Google Scholar
  38. 38.
    Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11Google Scholar
  39. 39.
    Hong SH, Gang EJ et al (2005) In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 330(4):1153–1161Google Scholar
  40. 40.
    Horwitz EM, Gordon PL et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99(13):8932–8937Google Scholar
  41. 41.
    Horwitz EM, Le Blanc K et al (2005) Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 7(5):393–395Google Scholar
  42. 42.
    Horwitz EM, Prockop DJ et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313Google Scholar
  43. 43.
    Hutley LJ, Herington AC et al (2001) Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab 281(5):E1037–E1044Google Scholar
  44. 44.
    In’t Anker PS, Scherjon SA et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345Google Scholar
  45. 45.
    In’t Anker PS, Scherjon SA et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549Google Scholar
  46. 46.
    Javazon EH, Beggs KJ et al (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32(5):414–425Google Scholar
  47. 47.
    Kang SG, Jeun SS et al (2008) Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells. Childs Nerv Syst 24(3):293–302Google Scholar
  48. 48.
    Karlsson H, Samarasinghe S et al (2008) Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood 112(3):532–541Google Scholar
  49. 49.
    Kaviani A, Perry TE et al (2002) The placenta as a cell source in fetal tissue engineering. J Pediatr Surg 37(7):995–999 (discussion 995–999)Google Scholar
  50. 50.
    Kehat I, Kenyagin-Karsenti D et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108(3):407–414Google Scholar
  51. 51.
    Kern S, Eichler H et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301Google Scholar
  52. 52.
    Kim D, Kim CH et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476Google Scholar
  53. 53.
    Kim J, Lee Y et al (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 40(1):75–90Google Scholar
  54. 54.
    Kim SJ, Song CH et al (2007) Human placenta-derived feeders support prolonged undifferentiated propagation of a human embryonic stem cell line, SNUhES3: comparison with human bone marrow-derived feeders. Stem Cells Dev 16(3):421–428Google Scholar
  55. 55.
    Koc ON, Day J et al (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30(4):215–222Google Scholar
  56. 56.
    Kolambkar YM, Peister A et al (2007) Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol 38(5):405–413Google Scholar
  57. 57.
    Koponen JK, Kekarainen T et al (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model. Mol Ther 15(12):2172–2177Google Scholar
  58. 58.
    Ksiazek K (2009) A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 12(2):105–116Google Scholar
  59. 59.
    Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485–489Google Scholar
  60. 60.
    Le Blanc K, Gotherstrom C et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79(11):1607–1614Google Scholar
  61. 61.
    Lee OK, Kuo TK et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675Google Scholar
  62. 62.
    Li F, Bronson S et al (2010) Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage. J Cell Biochem 109(4):643–652Google Scholar
  63. 63.
    Lian Q, Lye E et al (2007) Derivation of clinically compliant MSCs from CD105 + , CD24- differentiated human ESCs. Stem Cells 25(2):425–436Google Scholar
  64. 64.
    Lian Q, Zhang Y et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123Google Scholar
  65. 65.
    Liu Y, Goldberg AJ et al (2012) One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS ONE 7(3):e33225Google Scholar
  66. 66.
    Lorda-Diez CI, Montero JA et al (2009) Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem 284(43):29988–29996Google Scholar
  67. 67.
    Markov V, Kusumi K et al (2007) Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev 16(1):53–73Google Scholar
  68. 68.
    Mazzini L, Mareschi K et al (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265(1–2):78–83Google Scholar
  69. 69.
    McGuckin CP, Forraz N et al (2005) Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 38(4):245–255Google Scholar
  70. 70.
    McIntosh K, Zvonic S et al (2006) The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24(5):1246–1253Google Scholar
  71. 71.
    Meissner A, Wernig M et al (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181Google Scholar
  72. 72.
    Miranville A, Heeschen C et al (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110(3):349–355Google Scholar
  73. 73.
    Miyoshi N, Ishii H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638Google Scholar
  74. 74.
    Morigi M, Rota C et al (2010) Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28(3):513–522Google Scholar
  75. 75.
    Moschidou M, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, Nowakowska B, Phoolchund A, Lay K, Ramasamy TS, Cananzi M, ettersheim D, Sullivan M, Frost J, Moore G, Vermeesch JR, Fisk NM, Thrasher AJ, Atala A, Adjaye J, Schorle H, De Coppi P, Guillot PV (2012, in press) Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther 20(10):1953–1967 Google Scholar
  76. 76.
    Munoz JR, Stoutenger BR et al (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102(50):18171–18176Google Scholar
  77. 77.
    Nambu M, Kishimoto S et al (2009) Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 62(3):317–321Google Scholar
  78. 78.
    Nie C, Yang D et al (2011) Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 20(2):205–216Google Scholar
  79. 79.
    Odorico JS, Kaufman DS et al (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19(3):193–204Google Scholar
  80. 80.
    Okita K, Nakagawa M et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953Google Scholar
  81. 81.
    Olivier EN, Rybicki AC et al (2006) Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells 24(8):1914–1922Google Scholar
  82. 82.
    Pan HC, Yang DY et al (2006) Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neurosci 13(5):570–575Google Scholar
  83. 83.
    Parolini O, Alviano F et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26(2):300–311Google Scholar
  84. 84.
    Pelagiadis I, Dimitriou H et al (2008) Biologic characteristics of mesenchymal stromal cells and their clinical applications in pediatric patients. J Pediatr Hematol Oncol 30(4):301–309Google Scholar
  85. 85.
    Piccoli M, Franzin C et al (2012) Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells 30(8):1675–1684 Google Scholar
  86. 86.
    Pittenger MF, Mackay AM et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147Google Scholar
  87. 87.
    Prusa AR, Marton E et al (2003) Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 18(7):1489–1493Google Scholar
  88. 88.
    Prusa AR, Marton E et al (2004) Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol 191(1):309–314Google Scholar
  89. 89.
    Puissant B, Barreau C et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129(1):118–129Google Scholar
  90. 90.
    Richards M, Fong CY et al (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20(9):933–936Google Scholar
  91. 91.
    Roelen BA, Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci 8(5):740–748Google Scholar
  92. 92.
    Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171Google Scholar
  93. 93.
    Roubelakis MG, Pappa KI et al (2007) Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 16(6):931–952Google Scholar
  94. 94.
    Sanchez-Ramos J, Song S et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256Google Scholar
  95. 95.
    Sanchez L, Gutierrez-Aranda I et al (2011) Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells 29(2):251–262Google Scholar
  96. 96.
    Sartore S, Lenzi M et al (2005) Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. Eur J Cardiothorac Surg 28(5):677–684Google Scholar
  97. 97.
    Schipper BM, Marra KG et al (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60(5):538–544Google Scholar
  98. 98.
    Schmidt D, Stock UA et al (2007) Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philos Trans R Soc Lond B Biol Sci 362(1484):1505–1512Google Scholar
  99. 99.
    Sengenes C, Lolmede K et al (2005) Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 205(1):114–122Google Scholar
  100. 100.
    Soldner F, Hockemeyer D et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977Google Scholar
  101. 101.
    Strakova Z, Livak M et al (2008) Multipotent properties of myofibroblast cells derived from human placenta. Cell Tissue Res 332(3):479–488Google Scholar
  102. 102.
    Sugaya K (2003) Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. Int Rev Cytol 228:1–30Google Scholar
  103. 103.
    Sun B, Jeong YH et al (2007) Regulation of human umbilical cord blood-derived multi-potent stem cells by autogenic osteoclast-based niche-like structure. Biochem Biophys Res Commun 357(1):92–98Google Scholar
  104. 104.
    Takahashi K, Ichisaka T et al (2006) Identification of genes involved in tumor-like properties of embryonic stem cells. Methods Mol Biol 329:449–458Google Scholar
  105. 105.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676Google Scholar
  106. 106.
    Takeda Y, Mori T et al (2004) Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? J Gene Med 6(8):833–845Google Scholar
  107. 107.
    Takeuchi M, Takeuchi K et al (2007) Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 43(3–4):129–138Google Scholar
  108. 108.
    Terai M, Uyama T et al (2005) Immortalization of human fetal cells: the life span of umbilical cord blood-derived cells can be prolonged without manipulating p16INK4a/RB braking pathway. Mol Biol Cell 16(3):1491–1499Google Scholar
  109. 109.
    Thomson JA, Itskovitz-Eldor J et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147Google Scholar
  110. 110.
    Tisato V, Naresh K et al (2007) Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia 21(9):1992–1999Google Scholar
  111. 111.
    Traktuev DO, Merfeld-Clauss S et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85Google Scholar
  112. 112.
    Trivedi P, Hematti P (2007) Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells. Exp Hematol 35(1):146–154Google Scholar
  113. 113.
    Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36(3):350–359Google Scholar
  114. 114.
    Tsai MS, Hwang SM et al (2006) Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 74(3):545–551Google Scholar
  115. 115.
    Tsai MS, Lee JL et al (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19(6):1450–1456Google Scholar
  116. 116.
    Urashima M, Hoshi Y et al (1995) Ex vivo expansion of umbilical cord blood hematopoietic progenitor cells by combinations of cytokines. Acta Paediatr Jpn 37(2):160–165Google Scholar
  117. 117.
    Waddington RJ, Youde SJ et al (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1–4):268–274Google Scholar
  118. 118.
    Wang JF, Wu YF et al (2004) Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells. J Zhejiang Univ Sci 5(2):157–163Google Scholar
  119. 119.
    Warren L, Manos PD et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630Google Scholar
  120. 120.
    Whyte MP, Kurtzberg J et al (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18(4):624–636Google Scholar
  121. 121.
    Woltjen K, Michael IP et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770Google Scholar
  122. 122.
    Wright JT, Hausman GJ (1990) Adipose tissue development in the fetal pig examined using monoclonal antibodies. J Anim Sci 68(4):1170–1175Google Scholar
  123. 123.
    Wright JT, Hausman GJ (1990) Monoclonal antibodies against cell surface antigens expressed during porcine adipocyte differentiation. Int J Obes 14(5):395–409Google Scholar
  124. 124.
    Yan Y, Xu W et al (2009) Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 29(3):356–365Google Scholar
  125. 125.
    Yen BL, Chien CC et al (2008) Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng Part A 14(1):9–17Google Scholar
  126. 126.
    Yu J, Hu K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801Google Scholar
  127. 127.
    Zhang HJ, Siu MK et al (2008) Oct4 is epigenetically regulated by methylation in normal placenta and gestational trophoblastic disease. Placenta 29(6):549–554Google Scholar
  128. 128.
    Zhao P, Ise H et al (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79(5):528–535Google Scholar
  129. 129.
    Zhao Y, Wang H et al (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312(13):2454–2464Google Scholar
  130. 130.
    Zhou T, Benda C et al (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22(7):1221–1228Google Scholar
  131. 131.
    Zuk PA, Zhu M et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295Google Scholar
  132. 132.
    Zuk PA, Zhu M et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228Google Scholar

Copyright information

© 2013 2012

Authors and Affiliations

  • Michela Pozzobon
    • 1
    • 2
  • Martina Piccoli
    • 1
    • 2
  • Paolo De Coppi
    • 4
    • 3
  1. 1.Department of Woman and Child HealthUniversity of PadovaPaduaItaly
  2. 2.Città della Speranza FoundationMonte di Malo VicenzaItaly
  3. 3.UCL Institute of Child HealthSurgery Unit, Great Ormond Street Hospital, University CollegeLondonUK
  4. 4.Department of Pediatrics and Pediatric SurgeryUniversity of PadovaPaduaItaly

Personalised recommendations