Dissecting Paracrine Effectors for Mesenchymal Stem Cells

  • Stefania Bruno
  • Federica Collino
  • Ciro Tetta
  • Giovanni Camussi
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 129)


There has been increasing interest in the application of mesenchymal stem cells (MSCs) in regenerative medicine in recent years. In this context, the beneficial effects of MSCs have been ascribed mainly to a paracrine action rather than to direct replacement of the injured tissue. Indeed, MSCs produce a great variety of trophic and immunomodulatory factors. In this chapter, we provide an overview of growth factors and chemokines involved in stimulation of cell proliferation, inhibition of apoptosis, enhancement of angiogenesis, and suppression of inflammatory and immune response. In addition, we discuss the emerging role of the extracellular vesicles released from MSCs as possible paracrine mediators.

Graphical Abstract


Acute injury Bioactive factors Chemokines Conditioned medium Growth factors Microvesicles 



Acute kidney injury


Mesenchymal stem cells overexpressing the Akt gene


Acute lung injury




Basic fibroblast growth factor


Conditioned medium


Hepatocyte growth factor


Indoleamine 2,3-deoxygenase


Insulin-like growth factor 1




Keratinocyte growth factor


Messenger RNA


Mesenchymal stem cell




Natural killer


Prostaglandin E2


Small interfering RNA


Transforming growth factor β


Regulatory T cells


Vascular endothelial growth factor


  1. 1.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822Google Scholar
  2. 2.
    Aliotta JM, Sanchez-Guijo FM, Dooner GJ et al (2007) Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 25:2245–2256Google Scholar
  3. 3.
    Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogenic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102:11474–11479Google Scholar
  4. 4.
    Baratelli F, Lin Y, Zhu L et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ cells. J Immunol 175:1483–1490Google Scholar
  5. 5.
    Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48Google Scholar
  6. 6.
    Bi B, Schmitt R, Israilova M et al (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496Google Scholar
  7. 7.
    Birukova AA, Alekseeva E, Mikaelyan A et al (2007) HGF attenuates thrombin-induced endothelial permeability by Tiam1-mediated activation of the Rac pathway and by Tiam1/Rac-dependent inhibition of the Rho pathway. FASEB J 21:2776–86Google Scholar
  8. 8.
    Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369Google Scholar
  9. 9.
    Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067Google Scholar
  10. 10.
    Camussi G, Deregibus MC, Bruno S et al (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848Google Scholar
  11. 11.
    Caplan A, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084Google Scholar
  12. 12.
    Casiraghi F, Azzollini N, Cassis P et al (2008) Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181:3933–3946Google Scholar
  13. 13.
    Chen L, Zhang W, Yue H et al (2007) Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells Dev 16:719–731Google Scholar
  14. 14.
    Choi S, Park M, Kim J et al (2009) The role of mesenchymal stem cells in the functional improvement of chronic renal failure. Stem Cells Dev 18:521–529Google Scholar
  15. 15.
    Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51Google Scholar
  16. 16.
    Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE 5:11803Google Scholar
  17. 17.
    Darnel JE Jr (1997) STATs and gene regulation. Science 277:1630–1635Google Scholar
  18. 18.
    Deregibus MC, Cantaluppi V, Calogero R et al (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448Google Scholar
  19. 19.
    Di Ianni M, Del Papa B, De Ioanni M et al (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36:309–318Google Scholar
  20. 20.
    Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843Google Scholar
  21. 21.
    Djouad F, Charbonnier LM, Bouffi C et al (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032Google Scholar
  22. 22.
    Duffield JS, Park KM, Hsiao LL et al (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755Google Scholar
  23. 23.
    English K, Barry FP, Mahon BP (2008) Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 115:50–58Google Scholar
  24. 24.
    Epperly MW, Guo H, Gretton JE et al (2003) Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol 29:213–224Google Scholar
  25. 25.
    Ernst M, Jenkins BJ (2004) Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 20:23–32Google Scholar
  26. 26.
    Fang X, Neyrinck AP, Matthay MA et al (2010) Allogenic human MSC restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 285:26211–26222Google Scholar
  27. 27.
    Fazel S, Chen L, Weisel RD et al (2005) Cell transplantation preserve cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. J Thorac Cardiovasc Surg 130:1310–1318Google Scholar
  28. 28.
    Garcia-Olmo D, Garcia-Arranz M, Herreros D et al (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48:1416–1423Google Scholar
  29. 29.
    Gatti S, Bruno S, Deregibus MC et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483Google Scholar
  30. 30.
    Ge W, Jiang J, Baroja ML et al (2009) Infusion of mesenchymal stem cells and rapamycin synergize to attenuate allo-immune responses and promote cardiac allograft tolerance. Am J Transplant 9:1760–1772Google Scholar
  31. 31.
    Glennie S, Soeiro I, Dyson PJ et al (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827Google Scholar
  32. 32.
    Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cell. Nat Med 11:267–368Google Scholar
  33. 33.
    Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669Google Scholar
  34. 34.
    Gupta N, Su X, Popov B et al (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–63Google Scholar
  35. 35.
    Hauser PV, De Fazio R, Bruno S et al (2010) Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol 177:2011–2021Google Scholar
  36. 36.
    Heijnen HF, Schiel AE, Fijnheer R et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799Google Scholar
  37. 37.
    Herrera MB, Bussolati B, Bruno S et al (2004) Mesenchymal stem cells contribute to renal repair on acute tubular epithelial injury. Int J Mol Med 14:1035–1041Google Scholar
  38. 38.
    Herrera MB, Bussolati B, Bruno S et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–441Google Scholar
  39. 39.
    Hoek JB, Pastorino JG (2004) Cellular signalling mechanisms in alcohol-induced liver damage. Semin Liver Dis 24:257–272Google Scholar
  40. 40.
    Humphreys BD, Valerius MT, Kobayashi A et al (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 6:284–2891Google Scholar
  41. 41.
    Hwu P, Du MX, Lapointe R et al (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599Google Scholar
  42. 42.
    Imberti B, Morigi M, Tomasoni S et al (2007) Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 18:2921–2928Google Scholar
  43. 43.
    Jang YY, Sharkis SJ (2004) Metamorphosis from bone marrow derived primitive stem cells to functional liver cells. Cell Cycle 3:980–982Google Scholar
  44. 44.
    Kim I, Moon SO, Park SK et al (2001) Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 89:477–479Google Scholar
  45. 45.
    Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow derived stromal cells augments collateral perfusion through paracrine mechanism. Circulation 109:1543–1549Google Scholar
  46. 46.
    Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729Google Scholar
  47. 47.
    Kunter U, Rong S, Boor P et al (2007) Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol 18:1754–1764Google Scholar
  48. 48.
    Kwak HJ, So JN, Lee SJ et al (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 448:249–253Google Scholar
  49. 49.
    Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfuaion injury. Stem Cell Res 4:214–222Google Scholar
  50. 50.
    Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6:481–492Google Scholar
  51. 51.
    Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441Google Scholar
  52. 52.
    Lee JW, Fang X, Gupta N et al (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A 106:16357–16362Google Scholar
  53. 53.
    Li H, Guo Z, Jiang X et al (2008) Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft-versus-host disease. Stem Cells 26:2531–2541Google Scholar
  54. 54.
    Li L, Zhang S, Zhang Y et al (2009) Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 36:725–731Google Scholar
  55. 55.
    Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449Google Scholar
  56. 56.
    Mei SH, McCarter SD, Deng Y et al (2007) Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 4:e269Google Scholar
  57. 57.
    Meisel R, Zibert A, Laryea M et al (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621Google Scholar
  58. 58.
    Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834Google Scholar
  59. 59.
    Mirotsou M, Zhang Z, Deb A et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104:1643–1648Google Scholar
  60. 60.
    Morigi M, Imberti B, Zoja C et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804Google Scholar
  61. 61.
    Morigi M, Introna M, Imberti B et al (2008) Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26:2075–2082Google Scholar
  62. 62.
    Nemeth K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49Google Scholar
  63. 63.
    Nemzek JA, Ebong SJ, Kim J et al (2002) Keratinocyte growth factor pretreatment is associated with decreased macrophage inflammatory protein-2α concentrations and reduced neutrophil recruitment in acid aspiration lung injury. Shock 18:501–506Google Scholar
  64. 64.
    Nishida M, Li TS, Hirata K et al (2003) Improvement of cardiac function by bone marrow cell implantation in a rat hypoperfusion heart model. Ann Thorac Surg 75:768–773Google Scholar
  65. 65.
    Ortiz LA, Gambelli F, McBride C et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100:8407–8411Google Scholar
  66. 66.
    Ortiz LA, Dutreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the anti-inflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104:11002–11007Google Scholar
  67. 67.
    Parekkadan B, van Poll D, Suganuma K et al (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. Plos ONE 9:e941Google Scholar
  68. 68.
    Prevosto C, Zancolli M, Canevali P et al (2007) Genertaion of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92:881–888Google Scholar
  69. 69.
    Popp FC, Eggenhofer E, Renner P et al (2008) Mesenchymal stem cells can induce long term acceptance of solid organ allografts in synergy with low-dose mucophenolato. Transpl Immunol 20:55–60Google Scholar
  70. 70.
    Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–56Google Scholar
  71. 71.
    Ratajczak J, Wysoczynski M, Hayek F et al (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495Google Scholar
  72. 72.
    Rojas M, Xu J, Woods CR et al (2005) Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 33:145–152Google Scholar
  73. 73.
    Ryan JM, Barry F, Murphy JM et al (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149:353–363Google Scholar
  74. 74.
    Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234Google Scholar
  75. 75.
    Selmani Z, Naji A, Zidi I et al (2008) Human leukocyte antigen G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222Google Scholar
  76. 76.
    Shabbir A, Zisa D, Suzuki G et al (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a non invasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296:H1888–H1897Google Scholar
  77. 77.
    Shabbir A, Zisa D, Lin H et al (2010) Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Cirs Physiol 299:H1428–H1438Google Scholar
  78. 78.
    Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704Google Scholar
  79. 79.
    Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490Google Scholar
  80. 80.
    Tetta C, Bruno S, Fonsato V et al (2011) The role of microvesicles in tissue repair. Organogenesis 7:102–115Google Scholar
  81. 81.
    Timmers L, Lim S-K, Arslan F et al (2008) Reduction of infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1:129–137Google Scholar
  82. 82.
    Tögel F, Zhang P, Hu Z et al (2009) VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med 13:2109–2114Google Scholar
  83. 83.
    Tomita S, Mickle DA, Weisel RD et al (2002) Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123:1132–1140Google Scholar
  84. 84.
    Tse WT, Pendleton JD, Beyer WM et al (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397Google Scholar
  85. 85.
    Van Poll D, Parekkadan B, Cho CH et al. (2008) Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47:1634–1643Google Scholar
  86. 86.
    Wang Y, Folkesson HG, Jayr C et al (1999) Alveolar epithelial fluid transport can be simultaneously upregulated by both KGF and β-agonist therapy. J Appl Physiol 87:1852–1860Google Scholar
  87. 87.
    Ware LB, Matthay MA (2002) Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am J Physiol Lung Cell Mol Physiol 282:L924–L940Google Scholar
  88. 88.
    Xu J, Woods CR, Mora AL et al (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293:L131–L141Google Scholar
  89. 89.
    Xu J, Qu J, Cao L et al (2008) Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 214:472–481Google Scholar
  90. 90.
    Yagi H, Soto-Gutierrez A, Parekkadan B et al (2011) Mesenchymal stem cells: mechanism of immunomodulation and homing. Cell Transplant 19:667–679Google Scholar
  91. 91.
    Yamada M, Kubo H, Kobayashi S et al (2004) Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 72:1266–1272Google Scholar
  92. 92.
    Yamagiwa S, Grays JD, Hashimoto S et al (2001) A role of TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 166:7282–7289Google Scholar
  93. 93.
    Yano T, Mason RJ, Pan T et al (2000) KGF regulates pulmonary epithelial proliferation and surfactant protein gene expression in adult rat lung. Am J Physiol Lung Cell Mol Physiol 279:L1146–1158Google Scholar
  94. 94.
    Yuan A, Farber EL, Rapoport AL et al (2009) Transfer of microRNAs by embryonic stem cell microvesicles. PLoS ONE 4:4722Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefania Bruno
    • 1
  • Federica Collino
    • 1
  • Ciro Tetta
    • 2
  • Giovanni Camussi
    • 1
  1. 1.Department of Internal Medicine and Molecular Biotechnology CenterUniversity of TurinTurinItaly
  2. 2.Fresenius Medical CareBad HomburgGermany

Personalised recommendations