Advertisement

A Highly Versatile Microscope Imaging Technology Platform for the Multiplex Real-Time Detection of Biomolecules and Autoimmune Antibodies

  • Stefan Rödiger
  • Peter Schierack
  • Alexander Böhm
  • Jörg Nitschke
  • Ingo Berger
  • Ulrike Frömmel
  • Carsten Schmidt
  • Mirko Ruhland
  • Ingolf Schimke
  • Dirk Roggenbuck
  • Werner Lehmann
  • Christian SchröderEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 133)

Abstract

The analysis of different biomolecules is of prime importance for life science research and medical diagnostics. Due to the discovery of new molecules and new emerging bioanalytical problems, there is an ongoing demand for a technology platform that provides a broad range of assays with a user-friendly flexibility and rapid adaptability to new applications. Here we describe a highly versatile microscopy platform, VideoScan, for the rapid and simultaneous analysis of various assay formats based on fluorescence microscopic detection. The technological design is equally suitable for assays in solution, microbead-based assays and cell pattern recognition. The multiplex real-time capability for tracking of changes under dynamic heating conditions makes it a useful tool for PCR applications and nucleic acid hybridization, enabling kinetic data acquisition impossible to obtain by other technologies using endpoint detection. The paper discusses the technological principle of the platform regarding data acquisition and processing. Microbead-based and solution applications for the detection of diverse biomolecules, including antigens, antibodies, peptides, oligonucleotides and amplicons in small reaction volumes, are presented together with a high-content detection of autoimmune antibodies using a HEp-2 cell assay. Its adaptiveness and versatility gives VideoScan a competitive edge over other bioanalytical technologies.

Graphical Abstract

Keywords

Autoimmune diagnostic Hybridization kinetics Immunofluorescence patterns Microbeads Microscope imaging technology Multiplex Real-time 

Notes

Acknowledgments

This work was supported by the BMBF InnoProfile-Projekt 03 JP 611. We thank the following people from Lausitz University of Applied Sciences: Jörg Weinreich, Andrea Krause, Katharina Metzner, Mandy Sowa, Claudia Deutschmann, and Alexander Kaiser. We are grateful to Reinhard Pregla, MD, Deutsches Herzzentrum Berlin for providing the human heart sample.

References

  1. 1.
    Hiemann R, Büttner T, Krieger T, Roggenbuck D, Sack U, Conrad K (2009) Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells. Autoimmun Rev 9:17–22CrossRefGoogle Scholar
  2. 2.
    Grossmann K, Roggenbuck D, Schröder C, Conrad K, Schierack P, Sack U (2011) Multiplex assessment of non-organ-specific autoantibodies with a novel microbead-based immunoassay. Cytometry A 79:118–125Google Scholar
  3. 3.
    Rödiger S, Ruhland M, Schmidt C, Schröder C, Grossmann K, Böhm A, Nitschke J, Berger I, Schimke I, Schierack P (2011) Fluorescence dye adsorption assay to quantify carboxyl groups on the surface of poly(methyl methacrylate) microbeads. Anal Chem 83:3379–3385CrossRefGoogle Scholar
  4. 4.
    Derveaux S, Stubbe BG, Braeckmans K, Roelant C, Sato K, Demeester J, De Smedt SC (2008) Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient. Anal Bioanal Chem 391:2453–2467CrossRefGoogle Scholar
  5. 5.
    Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JRJ (1997) Advanced multiplexed analysis with the FlowMetrix system. Clin Chem 43:1749–1756Google Scholar
  6. 6.
    Wallace J, Zhou Y, Usmani GN, Reardon M, Newburger P, Woda B, Pihan G (2003) BARCODE-ALL: accelerated and cost-effective genetic risk stratification in acute leukemia using spectrally addressable liquid bead microarrays. Leukemia 17:1411–1413CrossRefGoogle Scholar
  7. 7.
    Godin J, Chen C, Cho SH, Qiao W, Tsai F, Lo Y (2008) Microfluidics and photonics for Bio-System-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J Biophotonics 1:355–376CrossRefGoogle Scholar
  8. 8.
    Lehmann W (2006) Verfahren und Testkit zum Nachweis von Analyten in einer Probe, Patent: EP 1332365Google Scholar
  9. 9.
    Lehmann W, Böhm A, Grossmann K, Hiemann R, Nitschke J, Rödiger S (2008) Method for carrying out and evaluating mix and measure assays for the measurement of reaction kinetics, concentrations and affinities of analytes in multiplex format. Publication number: US 2010/0203572 A1 NN:1–19Google Scholar
  10. 10.
    Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634CrossRefGoogle Scholar
  11. 11.
    Epstein JR, Leung APK, Lee KH, Walt DR (2003) High-density, microsphere-based fiber optic DNA microarrays. Biosens Bioelectron 18:541–546CrossRefGoogle Scholar
  12. 12.
    Sasuga Y, Tani T, Hayashi M, Yamakawa H, Ohara O, Harada Y (2006) Development of a microscopic platform for real-time monitoring of biomolecular interactions. Genome Res 16:132–139CrossRefGoogle Scholar
  13. 13.
    Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, McDevitt JT (2003) DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays. Anal Chem 75:4732–4739CrossRefGoogle Scholar
  14. 14.
    Michael KL, Taylor LC, Schultz SL, Walt DR (1998) Randomly ordered addressable high-density optical sensor arrays. Anal Chem 70:1242–1248CrossRefGoogle Scholar
  15. 15.
    Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10–21CrossRefGoogle Scholar
  16. 16.
    Young IT, Zagers R, van Vliet LJ, Mullikin J, Boddeke F, Netten H (1993) Depth-of-Focus in microscopy. Proceedings 8th SCIA. Tronto, Norway, pp 493–498Google Scholar
  17. 17.
    Beaucage SL (2001) Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications. Curr Med Chem 8:1213–1244CrossRefGoogle Scholar
  18. 18.
    Huang WM, Gibson SJ, Facer P, Gu J, Polak JM (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers ofl-lysine as a slide coating. Histochemistry 77:275–279CrossRefGoogle Scholar
  19. 19.
    Taylor S, Smith S, Windle B, Guiseppi-Elie A (2003) Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res 31:e87CrossRefGoogle Scholar
  20. 20.
    Russom A, Haasl S, Ohlander A, Mayr T, Brookes AJ, Andersson H, Stemme G (2004) Genotyping by dynamic heating of monolayered beads on a microheated surface. Electrophoresis 25:3712–3719CrossRefGoogle Scholar
  21. 21.
    Sochol R, Casavant B, Dueck M, Lee L, Lin L (2011) A dynamic bead-based microarray for parallel DNA detection. J Micromech Microeng 21:054019CrossRefGoogle Scholar
  22. 22.
    Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2:41–49CrossRefGoogle Scholar
  23. 23.
    Stevens PW, Wang CHJ, Kelso DM (2003) Immobilized particle arrays: coalescence of planar- and suspension-array technologies. Anal Chem 75:1141–1146CrossRefGoogle Scholar
  24. 24.
    Armstrong B, Stewart M, Mazumder A (2000) Suspension arrays for high throughput, multiplexed single nucleotide polymorphism genotyping. Cytometry 40:102–108CrossRefGoogle Scholar
  25. 25.
    Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82CrossRefGoogle Scholar
  26. 26.
    Day PJ, Flora PS, Fox JE, Walker MR (1991) Immobilization of polynucleotides on magnetic particles. Factors influencing hybridization efficiency. Biochem J 278(Pt 3):735–740Google Scholar
  27. 27.
    Rödiger S, Friedrichsmeier T, Kapat P, Michalke M (2011) RKWard—a comprehensive graphical user interface and integrated development environment for statistical analysis with R. Journal of Statistical Software (ahead of publication), ISSN 1548-7660Google Scholar
  28. 28.
    Diaz MR, Fell JW (2004) High-throughput detection of pathogenic yeasts of the genus trichosporon. J Clin Microbiol 42:3696–3706CrossRefGoogle Scholar
  29. 29.
    Egerer K, Roggenbuck D, Hiemann R, Weyer M, Büttner T, Radau B, Krause R, Lehmann B, Feist E, Burmester G (2010) Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests. Arthritis Res Ther 12:R40CrossRefGoogle Scholar
  30. 30.
    Conrad K, Ittenson A, Reinhold D, Fischer R, Roggenbuck D, Büttner T, Bosselmann H, Steinbach J, Schössler W (2009) High sensitive detection of double-stranded DNA autoantibodies by a modified Crithidia luciliae immunofluorescence test. Ann N Y Acad Sci 1173:180–185CrossRefGoogle Scholar
  31. 31.
    Conrad K, Roggenbuck D, Reinhold D, Sack U (2011) Autoantibody diagnostics in clinical practice. Autoimmun RevGoogle Scholar
  32. 32.
    Sack U, Conrad K, Csernok E, Frank I, Hiepe F, Krieger T, Kromminga A, von Landenberg P, Messer G, Witte T, Mierau R (2009) Autoantibody detection using indirect immunofluorescence on HEp-2 cells. Ann N Y Acad Sci 1173:166–173CrossRefGoogle Scholar
  33. 33.
    Conrad K, Roggenbuck D, Reinhold D, Dörner T (2010) Profiling of rheumatoid arthritis associated autoantibodies. Autoimmun Rev 9:431–435CrossRefGoogle Scholar
  34. 34.
    Wiik A (2003) Autoantibodies in vasculitis. Arthritis Res Ther 5:147–152CrossRefGoogle Scholar
  35. 35.
    Rigon A, Soda P, Zennaro D, Iannello G, Afeltra A (2007) Indirect immunofluorescence in autoimmune diseases: assessment of digital images for diagnostic purpose. Cytometry B Clin Cytom 72:472–477Google Scholar
  36. 36.
    Hiemann R, Hilger N, Sack U, Weigert M (2006) Objective quality evaluation of fluorescence images to optimize automatic image acquisition. Cytometry A 69:182–184Google Scholar
  37. 37.
    Molloy RM, McConnell RI, Lamont JV, FitzGerald SP (2005) Automation of biochip array technology for quality results. Clin Chem Lab Med 43:1303–1313CrossRefGoogle Scholar
  38. 38.
    Pang S, Smith J, Onley D, Reeve J, Walker M, Foy C (2005) A comparability study of the emerging protein array platforms with established ELISA procedures. J Immunol Methods 302:1–12CrossRefGoogle Scholar
  39. 39.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20:37–46CrossRefGoogle Scholar
  40. 40.
    Jaekell HP, Trabandt A, Grobe N, Werle E (2006) Anti-dsDNA antibody subtypes and anti-C1q antibodies: toward a more reliable diagnosis and monitoring of systemic lupus erythematosus and lupus nephritis. Lupus 15:335–345CrossRefGoogle Scholar
  41. 41.
    Rouquette A, Desgruelles C, Laroche P (2003) Evaluation of the new multiplexed immunoassay, FIDIS, for simultaneous quantitative determination of antinuclear antibodies and comparison with conventional methods. Am J Clin Pathol 120:676–681CrossRefGoogle Scholar
  42. 42.
    Conrad K, Schössler W, Hiepe F (2006) Autoantikörper bei systemischen Autoimmunerkrankungen. Ein diagnostischer Leitfaden. Pabst Science Publ,www.pabst-publishers.de, ISBN: 9783899672763
  43. 43.
    Wagner W, Jandeck C, Nitschke J, Böhm A, Kleinschmidt B, Mydlak K, Schierack P, Roggenbuck D, Conrad K, Lehmann W (2011) Analyse von Leistungsparametern des attomol®ANA-Bead Assays. Pabst Science Publ, www.pabst-publishers.de, ISBN: 978-3-89967-703-4
  44. 44.
    Eissfeller P, Sticherling M, Scholz D, Hennig K, Lüttich T, Motz M, Kromminga A (2005) Comparison of different test systems for simultaneous autoantibody detection in connective tissue diseases. Ann N Y Acad Sci 1050:327–339CrossRefGoogle Scholar
  45. 45.
    Gilburd B, Abu-Shakra M, Shoenfeld Y, Giordano A, Bocci EB, Delle Monache F, Gerli R (2004) Autoantibodies profile in the sera of patients with Sjogren’s syndrome: the ANA evaluation—a homogeneous, multiplexed system. Clin Dev Immunol 11:53–56CrossRefGoogle Scholar
  46. 46.
    Martins TB, Burlingame R, von Mühlen CA, Jaskowski TD, Litwin CM, Hill HR (2004) Evaluation of multiplexed fluorescent microsphere immunoassay for detection of autoantibodies to nuclear antigens. Clin Diagn Lab Immunol 11:1054–1059Google Scholar
  47. 47.
    Butler JE (2000) Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22:4–23CrossRefGoogle Scholar
  48. 48.
    Hermanson G (1996) Bioconjugate techniques. Academic Press ISBN: 0123423368Google Scholar
  49. 49.
    González M, Bagatolli LA, Echabe I, Arrondo JL, Argaraña CE, Cantor CR, Fidelio GD (1997) Interaction of biotin with streptavidin. Thermostability and conformational changes upon binding. J Biol Chem 272:11288–11294CrossRefGoogle Scholar
  50. 50.
    Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929CrossRefGoogle Scholar
  51. 51.
    Chattopadhaya S, Tan LP, Yao SQ (2006) Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays. Nat Protoc 1:2386–2398CrossRefGoogle Scholar
  52. 52.
    Rödiger S, Schierack P, Schröder C (2008) Multiplex-DNA-Mikropartikeltechnologien und deren Anwendungen. Pabst Science Publ, www.pabst-publishers.de, ISBN: 978-3-89967-461-3
  53. 53.
    Morrison T, Hurley J, Garcia J, Yoder K, Katz A, Roberts D, Cho J, Kanigan T, Ilyin SE, Horowitz D, Dixon JM, Brenan CJH (2006) Nanoliter high throughput quantitative PCR. Nucleic Acids Res 34:e123CrossRefGoogle Scholar
  54. 54.
    Fan J, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham Garcia E, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73CrossRefGoogle Scholar
  55. 55.
    Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol 31:91–99CrossRefGoogle Scholar
  56. 56.
    Dandy DS, Wu P, Grainger DW (2007) Array feature size influences nucleic acid surface capture in DNA microarrays. Proc Natl Acad Sci U S A 104:8223–8228CrossRefGoogle Scholar
  57. 57.
    Henry MR, WilkinsStevens P, Sun J, Kelso DM (1999) Real-time measurements of DNA hybridization on microparticles with fluorescence resonance energy transfer. Anal Biochem 276:204–214CrossRefGoogle Scholar
  58. 58.
    Ugozzoli LA (2004) Multiplex assays with fluorescent microbead readout: a powerful tool for mutation detection. Clin Chem 50:1963–1965CrossRefGoogle Scholar
  59. 59.
    Rödiger S, Schröder C, Lehmann W, Böhm A, Nitschke J, Hiemann R, Berger I, Grossmann K, Lehmann J, Schierack P (2008) A novel microparticle-based technology for an automated multi-parameter screening in molecular diagnostics. abstract in: Int J Med Microbiol (IJMM; 298S2, 2008, Suppl. 45, MSP16, p 10) 298:1–118Google Scholar
  60. 60.
    Barbee KD, Hsiao AP, Roller EE, Huang X (2010) Multiplexed protein detection using antibody-conjugated microbead arrays in a microfabricated electrophoretic device. Lab Chip 10:3084–3093CrossRefGoogle Scholar
  61. 61.
    Frömmel U, Berger I, Rödiger S, Schierack P, Schröder C (2011) Multiplex-PCR-Mikropartikel-Assay zum Nachweis bakterieller Gene. Pabst Science Publ,www.pabst-publishers.de, ISBN: 978-3-89967-703-4
  62. 6 2.
    Ewers C, Li G, Wilking H, Kiessling S, Alt K, Antáo E, Laturnus C, Diehl I, Glodde S, Homeier T, Böhnke U, Steinrück H, Philipp H, Wieler LH (2007) Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297:163–176CrossRefGoogle Scholar
  63. 63.
    Rödiger S, Schmidt C, George S, Frömmel U, Ruhland M, Schimke I, Schierack P, Schröder C (2011) Alternative Nukleinsäureamplifikationsverfahren für die Multiparameteranalytik. Pabst Science Publ,www.pabst-publishers.de, ISBN: 978-3-89967-703-4
  64. 64.
    Mao F, Leung W, Xin X (2007) Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol 7:76CrossRefGoogle Scholar
  65. 65.
    Bustin S (2004) A-Z of quantitative PCR. International University Line, ISBN 978-0963681782Google Scholar
  66. 66.
    Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23:504–511Google Scholar
  67. 67.
    Logan J, Edwards K, Saunders N (2009) Real-time PCR: current technology and applications. Caister Academic Press, ISBN: 978-1-904455-39-4Google Scholar
  68. 68.
    Wittwer CT, Herrmann MG, Gundry CN, Elenitoba-Johnson KS (2001) Real-time multiplex PCR assays. Methods 25:430–442CrossRefGoogle Scholar
  69. 69.
    Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85CrossRefGoogle Scholar
  70. 70.
    Osterziel KJ, Perrot A (2005) Dilated cardiomyopathy: more genes means more phenotypes. Eur Heart J 26:751–754CrossRefGoogle Scholar
  71. 71.
    Ritz C, Spiess A (2008) qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics 24:1549–1551CrossRefGoogle Scholar
  72. 72.
    Ball AJ, Levine F (2005) Telomere-independent cellular senescence in human fetal cardiomyocytes. Aging Cell 4:21–30CrossRefGoogle Scholar
  73. 73.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034–research0034.11Google Scholar
  74. 74.
    Filipczyk AA, Passier R, Rochat A, Mummery CL (2007) Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci 64:704–718CrossRefGoogle Scholar
  75. 75.
    Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567CrossRefGoogle Scholar
  76. 76 .
    Muthumala A, Drenos F, Elliott PM, Humphries SE (2008) Role of beta adrenergic receptor polymorphisms in heart failure: systematic review and meta-analysis. Eur J Heart Fail 10:3–13CrossRefGoogle Scholar
  77. 77.
    Zolk O, Quattek J, Sitzler G, Schrader T, Nickenig G, Schnabel P, Shimada K, Takahashi M, Böhm M (1999) Expression of endothelin-1, endothelin-converting enzyme, and endothelin receptors in chronic heart failure. Circulation 99:2118–2123CrossRefGoogle Scholar
  78. 78.
    Kwok P, Chen X (2003) Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5:43–60Google Scholar
  79. 79.
    Martins SAM, Prazeres DMF, Fonseca LP, Monteiro GA (2009) The role of probe-probe interactions on the hybridization of double-stranded DNA targets onto DNA-modified magnetic microparticles. Anal Bioanal Chem 394:1711–1716CrossRefGoogle Scholar
  80. 80.
    Erickson D, Li D, Krull UJ (2003) Modeling of DNA hybridization kinetics for spatially resolved biochips. Anal Biochem 317:186–200CrossRefGoogle Scholar
  81. 81.
    Hassibi A, Vikalo H, Riechmann JL, Hassibi B (2009) Real-time DNA microarray analysis. Nucleic Acids Res 37:e132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Rödiger
    • 1
    • 4
  • Peter Schierack
    • 1
  • Alexander Böhm
    • 1
  • Jörg Nitschke
    • 1
  • Ingo Berger
    • 1
  • Ulrike Frömmel
    • 1
  • Carsten Schmidt
    • 1
  • Mirko Ruhland
    • 1
  • Ingolf Schimke
    • 4
  • Dirk Roggenbuck
    • 3
  • Werner Lehmann
    • 2
  • Christian Schröder
    • 1
    Email author
  1. 1.Lausitz University of Applied SciencesSenftenbergGermany
  2. 2.Attomol GmbHLiptenGermany
  3. 3.MEDIPAN GmbHBerlinGermany
  4. 4.Medizinische Klinik (Kardiologie)Charité–Universitätsmedizin BerlinBerlinGermany

Personalised recommendations