Biosensors for Diagnostic Applications

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 133)


Biosensors combine a transducer with a biorecognition element and thus are able to transform a biochemical event on the transducer surface directly into a measurable signal. By this they have the potential to provide rapid, real-time, and accurate results in a comparatively easy way, which makes them promising analytical devices. Since the first biosensor was introduced in 1962 as an “enzyme electrode” for monitoring glucose in blood, medical applications have been the main driving force for further biosensor development. In this chapter we outline potential biosensor setups, focusing on transduction principles, biorecognition layers, and biosensor test formats, with regard to potential applications. A summary of relevant aspects concerning biosensor integration in efficient analytical setups is included. We describe the latest applications of biosensors in diagnostic applications focusing on detection of molecular biomarkers in real samples. An overview of the current state and future trends of biosensors in this field is given.

Graphical Abstract


Biomarker Biosensor Detection Diagnostics Test format 


  1. 1.
    Hu S, Loo JA, Wong DT (2006) Human body fluid proteome analysis. Proteomics 6:6326–6353CrossRefGoogle Scholar
  2. 2.
    Yoo EH, Lee SY (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10:4558–4576CrossRefGoogle Scholar
  3. 3.
    Simon E (2010) Biological and chemical sensors for cancer diagnosis. Meas Sci Technol 21, Article No. 112002. doi: 10.1088/0957-0233/21/11/112002
  4. 4.
    Tothill IE (2009) Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 20:55–62CrossRefGoogle Scholar
  5. 5.
    Mascini M, Tombelli S (2008) Biosensors for biomarkers in medical diagnostics. Biomarkers 13:637–657CrossRefGoogle Scholar
  6. 6.
    Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416CrossRefGoogle Scholar
  7. 7.
    Wu J, Fu Z, Yan F, Ju H (2007) Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends Anal Chem 26:679–688CrossRefGoogle Scholar
  8. 8.
    Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453CrossRefGoogle Scholar
  9. 9.
    Gauglitz G, Luppa PB (2009) Point-of-care-testing patientennahe Labordiagnostik. Chem Unserer Zeit 43:308–318CrossRefGoogle Scholar
  10. 10.
    Braun S, Spannagl M, Völler H (2009) Patient self-testing and self-management of oral anticoagulation. Anal Bioanal Chem 393:1463–1471CrossRefGoogle Scholar
  11. 11.
    Warsinke A (2009) Point-of-care testing of proteins. Anal Bioanal Chem 393:1393–1405CrossRefGoogle Scholar
  12. 12.
    Thévenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348CrossRefGoogle Scholar
  13. 13.
    D’Orazio P (2011) Biosensors in clinical chemistry—2011 update. Clin Chim Acta 412:1749–1761CrossRefGoogle Scholar
  14. 14.
    Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500CrossRefGoogle Scholar
  15. 15.
    Rapp BE, Gruhl FJ, Länge K (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398:2403–2412CrossRefGoogle Scholar
  16. 16.
    Leca-Bouvier B, Blum LJ (2005) Biosensors for protein detection: a review. Anal Lett 38:1491–1517CrossRefGoogle Scholar
  17. 17.
    Li L (2011) Recent development of micromachined biosensors. IEEE Sens J 11:305–311CrossRefGoogle Scholar
  18. 18.
    Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45CrossRefGoogle Scholar
  19. 19.
    Shons A, Dorman F, Najarian J (1972) An immunospecific microbalance. J Biomed Mater Res 6:565–570CrossRefGoogle Scholar
  20. 20.
    Mosbach K, Danielsson B (1974) An enzyme thermistor. Biochim Biophys Acta 364:140–145CrossRefGoogle Scholar
  21. 21.
    Kronick MN, Little WA (1973) A new fluorescent immunoasssay. Bull Am Phys Soc 18:782Google Scholar
  22. 22.
    Kronick MN, Little WA (1975) A new immunoassay based on fluorescence excitation by internal reflection spectroscopy. J Immunol Methods 8:235–240CrossRefGoogle Scholar
  23. 23.
    Mansouri S, Schultz JS (1984) A miniature optical glucose sensor based on affinity binding. Nat Biotechnol 2:885–890CrossRefGoogle Scholar
  24. 24.
    Kriz CB, Rådevik K, Kriz D (1996) Magnetic permeability measurements in bioanalysis and biosensors. Anal Chem 68:1966–1970CrossRefGoogle Scholar
  25. 25.
    Baselt DR, Lee GU, Colton RJ (1996) Biosensor based on force microscope technology. J Vac Sci Technol B 14:789–793CrossRefGoogle Scholar
  26. 26.
    Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13:731–739CrossRefGoogle Scholar
  27. 27.
    Renneberg R, Pfeiffer D, Lisdat F, Wilson G, Wollenberger U, Ligler F, Turner APF (2008) Frieder Scheller and the short history of biosensors. Adv Biochem Eng Biotechnol 109:1–18Google Scholar
  28. 28.
    Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458CrossRefGoogle Scholar
  29. 29.
    Hsing IM, Xu Y, Zhao W (2007) Micro- and nano-magnetic particles for applications in biosensing. Electroanalysis 19:755–768CrossRefGoogle Scholar
  30. 30.
    Pohanka M, Skládal P (2008) Electrochemical biosensors—principles and applications. J Appl Biomed 6:57–64Google Scholar
  31. 31.
    Lojou É, Bianco P (2006) Application of the electrochemical concepts and techniques to amperometric biosensor devices. J Electroceram 16:79–91CrossRefGoogle Scholar
  32. 32.
    Koncki R (2007) Recent developments in potentiometric biosensors for biomedical analysis. Anal Chim Acta 599:7–15CrossRefGoogle Scholar
  33. 33.
    Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229CrossRefGoogle Scholar
  34. 34.
    Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315CrossRefGoogle Scholar
  35. 35.
    Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401–1420CrossRefGoogle Scholar
  36. 36.
    Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2010) Screen-printed biosensors in microbiology; a review. Talanta 82:1629–1636CrossRefGoogle Scholar
  37. 37.
    Bertoncello P, Forster RJ (2009) Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens Bioelectron 24:3191–3200CrossRefGoogle Scholar
  38. 38.
    Mastichiadis C, Niotis AE, Petrou PS, Kakabakos SE, Misiakos K (2008) Capillary-based immunoassays, immunosensors and DNA sensors—steps towards integration and multi-analysis. Trends Anal Chem 27:771–784CrossRefGoogle Scholar
  39. 39.
    Gauglitz G, Proll G (2008) Strategies for label-free optical detection. Adv Biochem Eng Biotechnol 109:395–432Google Scholar
  40. 40.
    Abbas A, Linman MJ, Cheng Q (2011) New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens Bioelectron 26:1815–1824CrossRefGoogle Scholar
  41. 41.
    Scarano S, Mascini M, Turner APF, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25:957–966CrossRefGoogle Scholar
  42. 42.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251CrossRefGoogle Scholar
  43. 43.
    Zourob M, Elwary S, Fan X, Mohr S, Goddard NJ (2009) Label-free detection with the resonant mirror biosensor. Methods Mol Biol 503:89–138CrossRefGoogle Scholar
  44. 44.
    Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26CrossRefGoogle Scholar
  45. 45.
    Gauglitz G (2010) Direct optical detection in bioanalysis: an update. Anal Bioanal Chem 398:2363–2372CrossRefGoogle Scholar
  46. 46.
    Proll G, Markovic G, Steinle L, Gauglitz G (2009) Reflectometric interference spectroscopy. Methods Mol Biol 503:167–178CrossRefGoogle Scholar
  47. 47.
    Kasai S, Tanabashi A, Kajiki K, Itsuji T, Kurosaka R, Yoneyama H, Yamashita M, Ito H, Ouchi T (2009) Micro strip line-based on-chip terahertz integrated devices for high sensitivity biosensors. Appl Phys Express 2, Article No. 062401. doi: 10.1143/APEX.2.062401
  48. 48.
    Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394:1719–1727CrossRefGoogle Scholar
  49. 49.
    Lucklum R, Hauptmann P (2006) Acoustic microsensors—the challenge behind microgravimetry. Anal Bioanal Chem 384:667–682CrossRefGoogle Scholar
  50. 50.
    Fu YQ, Luo JK, Du XY, Flewitt AJ, Li Y, Markx GH, Walton AJ, Milne WI (2010) Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens Actuators B 143:606–619CrossRefGoogle Scholar
  51. 51.
    Waggoner PS, Tan CP, Craighead HG (2010) Microfluidic integration of nanomechanical resonators for protein analysis in serum. Sens Actuators B 150:550–555CrossRefGoogle Scholar
  52. 52.
    Ferreira GNM, da-Silva AC, Tomé B (2009) Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance. Trends Biotechnol 27:689–697.CrossRefGoogle Scholar
  53. 53.
    Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519CrossRefGoogle Scholar
  54. 54.
    Waggoner PS, Craighead HG (2007) Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7:1238–1255CrossRefGoogle Scholar
  55. 55.
    Hwang KS, Lee SM, Kim SK, Lee JH, Kim TS (2009) Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem 2:77–98CrossRefGoogle Scholar
  56. 56.
    Xie B, Ramanathan K, Danielsson B (2000) Mini/micro thermal biosensors and other related devices for biochemical/clinical analysis and monitoring. Trends Anal Chem 19:340–349CrossRefGoogle Scholar
  57. 57.
    Ramanathan K, Danielsson B (2001) Principles and applications of thermal biosensors. Biosens Bioelectron 16:417–423CrossRefGoogle Scholar
  58. 58.
    Zhang Y, Tadigadapa S (2004) Calorimetric biosensors with integrated microfluidic channels. Biosens Bioelectron 19:1733–1743CrossRefGoogle Scholar
  59. 59.
    Llandro J, Palfreyman JJ, Ionescu A, Barnes CHW (2010) Magnetic biosensor technologies for medical applications: a review. Med Biol Eng Comput 48:977–998CrossRefGoogle Scholar
  60. 60.
    Wang SX, Li G (2008) Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44:1687–1702CrossRefGoogle Scholar
  61. 61.
    Class for Physics of the Royal Swedish Academy of Sciences (2007) The discovery of giant magnetoresistance. AAPPS Bull 17:2–11Google Scholar
  62. 62.
    Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Nature 184:1648–1649CrossRefGoogle Scholar
  63. 63.
    Wu AHB (2006) A selected history and future of immunoassay development and applications in clinical chemistry. Clin Chim Acta 369:119–124CrossRefGoogle Scholar
  64. 64.
    Silvestre CIC, Pinto PCAG, Segundo MA, Saraiva MLMFS, Lima JLFC (2011) Enzyme based assays in a sequential injection format: a review. Anal Chim Acta 689:160–177CrossRefGoogle Scholar
  65. 65.
    Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20:10–26CrossRefGoogle Scholar
  66. 66.
    Teles FRR, Fonseca LP (2008) Trends in DNA biosensors. Talanta 77:606–623CrossRefGoogle Scholar
  67. 67.
    Zhou L, Wang MH, Wang JP, Ye ZZ (2011) Application of biosensor surface immobilization methods for aptamer. Chin J Anal Chem 39:432–438CrossRefGoogle Scholar
  68. 68.
    Song S, Wang L, Li J, Zhao J, Fan C (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117CrossRefGoogle Scholar
  69. 69.
    Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799CrossRefGoogle Scholar
  70. 70.
    Shimomura-Shimizu M, Karube I (2010) Applications of microbial cell sensors. Adv Biochem Eng Biotechnol 118:1–30Google Scholar
  71. 71.
    Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40:1547–1571CrossRefGoogle Scholar
  72. 72.
    Fodey T, Leonhard P, O’Mahony J, O’Kennedy R, Danaher M (2011) Developments in the production of biological and synthetic binders for immunoassay and sensor-based detection of small molecules. Trends Anal Chem 30:254–269CrossRefGoogle Scholar
  73. 73.
    Bally M, Bailey K, Sugihara K, Grieshaber D, Vörös J, Städler B (2010) Liposome and lipid bilayer arrays towards biosensing applications. Small 6:2481–2497CrossRefGoogle Scholar
  74. 74.
    Gedig ET (2008) Surface chemistry in SPR technology. In: Schasfoort RBM, Tudos AJ (eds) Handbook of surface plasmon resonance, 1st edn. RSC Publishing, Cambridge, UKGoogle Scholar
  75. 75.
    Länge K, Rapp M (2009) Influence of intermediate hydrogel layer and amount of binding sites on the signal response of surface acoustic wave biosensors. Sens Actuators B 142:39–43CrossRefGoogle Scholar
  76. 76.
    Carlsson J, Gullstrand C, Westermark GT, Ludvigsson J, Enander K, Liedberg B (2008) An indirect competitive immunoassay for insulin autoantibodies based on surface plasmon resonance. Biosens Bioelectron 24:876–881CrossRefGoogle Scholar
  77. 77.
    Länge K, Grimm S, Rapp M (2007) Chemical modification of parylene C coatings for SAW biosensors. Sens Actuators B 125:441–446CrossRefGoogle Scholar
  78. 78.
    Masson JF, Battaglia TM, Khairallah P, Beaudoin S, Booksh KS (2007) Quantitative measurement of cardiac markers in undiluted serum. Anal Chem 79:612–619CrossRefGoogle Scholar
  79. 79.
    Länge K, Gruhl FJ, Rapp M (2009) Influence of preparative carboxylation steps on the analyte response of an acoustic biosensor. IEEE Sens J 9:2033–2034CrossRefGoogle Scholar
  80. 80.
    Hernandez K, Fernandez-Lafuente R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 48:107–122CrossRefGoogle Scholar
  81. 81.
    Crowther JR (2000) The ELISA guidebook. Humana Press, Totowa, NJ, USACrossRefGoogle Scholar
  82. 82.
    Jiang X, Li D, Xu X, Ying Y, Li Y, Ye Z, Wang J (2008) Immunosensors for detection of pesticide residues. Biosens Bioelectron 23:1577–1587CrossRefGoogle Scholar
  83. 83.
    Sadik OA, Aluoch AO, Zhou A (2009) Status of biomolecular recognition using electrochemical techniques. Biosens Bioelectron 24:2749–2765CrossRefGoogle Scholar
  84. 84.
    Perkel JM (2009) Who needs labels? Macromolecular interaction sans labels. Science 325:1561–1565CrossRefGoogle Scholar
  85. 85.
    Cooper MA (2006) Optical biosensors: where next and how soon? Drug Discov Today 11:1061–1067CrossRefGoogle Scholar
  86. 86.
    Treviño J, Calle A, Rodríguez-Frade JM, Mellado M, Lechuga LM (2009) Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay. Talanta 78:1011–1016CrossRefGoogle Scholar
  87. 87.
    Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43:496–505CrossRefGoogle Scholar
  88. 88.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308CrossRefGoogle Scholar
  89. 89.
    Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR (2002) Electronic detection of DNA by its intrinsic molecular charge. Proc Natl Acad Sci USA 99:14142–14146CrossRefGoogle Scholar
  90. 90.
    Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100:9134–9137CrossRefGoogle Scholar
  91. 91.
    Cash KJ, Ricci F, Plaxco KW (2009) An electrochemical sensor for the detection of protein–small molecule interactions directly in serum and other complex matrices. J Am Chem Soc 131:6955–6957CrossRefGoogle Scholar
  92. 92.
    Zhao S, Yang W, Lai RY (2011) A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron 26:2442–2447CrossRefGoogle Scholar
  93. 93.
    Mitsakakis K, Gizeli E (2011) Detection of multiple cardiac markers with an integrated acoustic platform for cardiovascular risk assessment. Anal Chim Acta 699:1–5CrossRefGoogle Scholar
  94. 94.
    Biacore Life Sciences (2011) Flow systems. Accessed 29 Aug 2011
  95. 95.
    SAW Instruments (2011) Products: sensor chips and chemistries. Accessed 29 Aug 2011
  96. 96.
    Rozlosnik N (2009) New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Anal Bioanal Chem 395:637–645CrossRefGoogle Scholar
  97. 97.
    Rapp BE, Carneiro L, Länge K, Rapp M (2009) An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. Lab Chip 9:354–356CrossRefGoogle Scholar
  98. 98.
    Rapp BE, Schickling B, Prokop J, Piotter V, Rapp M, Länge K (2011) Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system. Biomed Microdevices 13:909–922CrossRefGoogle Scholar
  99. 99.
    Echeverry G, Hortin GL, Rai AJ (2010) Introduction to urinalysis: historical perspectives and clinical application. Methods Mol Biol 641:1–12CrossRefGoogle Scholar
  100. 100.
    Spielmann N, Wong DT (2011) Saliva: diagnostics and therapeutic perspectives. Oral Dis 17:345–354CrossRefGoogle Scholar
  101. 101.
    Mattsson N (2011) CSF biomarkers in neurodegenerative diseases. Clin Chem Lab Med 49:345–352CrossRefGoogle Scholar
  102. 102.
    World Health Organization (2011) Cardiovascular diseases (CVDs). Fact sheet N°317, January 2011. Accessed 29 Aug 2011
  103. 103.
    Mohammed MI, Desmulliez MPY (2011) Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip 11:569–595CrossRefGoogle Scholar
  104. 104.
    Abbott Point of Care (2011) Cardiac troponin I/cTNI. Article no 715595-00M. Revision date 17 Jan 2011. Abbott Point of Care, Abbott ParkGoogle Scholar
  105. 105.
    de Vasconcelos EA, Peres NG, Peireira CO, da Silva VL, da Silva EF Jr, Dutra RF (2009) Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor. Biosens Bioelectron 25:870–876CrossRefGoogle Scholar
  106. 106.
    Dutra RF, Mendes RK, da Silva VL, Kubota LT (2007) Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer. J Pharm Biomed Anal 43:1744–1750CrossRefGoogle Scholar
  107. 107.
    Billah MM, Hodges CS, Hays HCW, Millner PA (2010) Directed immobilization of reduced antibody fragments onto a novel SAM on gold for myoglobin impedance immunosensing. Bioelectrochemistry 80:49–54CrossRefGoogle Scholar
  108. 108.
    Albrecht C, Kaeppel N, Gauglitz G (2008) Two immunoassay formats for fully automated CRP detection in human serum. Anal Bioanal Chem 391:1845–1852CrossRefGoogle Scholar
  109. 109.
    Lin KC, Kunduru V, Bothara M, Rege K, Prasad S, Ramakrishna BL (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens Bioelectron 25:2336–2342CrossRefGoogle Scholar
  110. 110.
    World Health Organization (2011) Cancer. Fact sheet N°297, February 2011. Accessed 29 Aug 2011
  111. 111.
    Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856CrossRefGoogle Scholar
  112. 112.
    Gohring JT, Dale PS, Fan X (2010) Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sens Actuators B 146:226–230CrossRefGoogle Scholar
  113. 113.
    Chang YF, Hung SH, Lee YJ, Chen RC, Su LC, Lai CS, Chou C (2011) Discrimination of breast cancer by measuring prostate-specific antigen levels in women’s serum. Anal Chem 83:5324–5328CrossRefGoogle Scholar
  114. 114.
    Soerjomataram I, Louwman MWJ, Ribot JG, Roukema JA, Coebergh JWW (2008) An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res Treat 107:309–330CrossRefGoogle Scholar
  115. 115.
    Loo LN, Capobianco JA, Wu W, Gao X, Shih WY, Shih WH, Pourrezaei K, Robinson MK, Adams GP (2011) Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal Chem 83:3392–3397CrossRefGoogle Scholar
  116. 116.
    Healy DA, Hayes CJ, Leonard P, McKenna L, O’Kennedy R (2007) Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol 25:125–131CrossRefGoogle Scholar
  117. 117.
    Li H, Wei Q, Wang G, Yang M, Qu F, Qian Z (2011) Sensitive electrochemical immunosensor for cancer biomarker with signal enhancement based on nitrodopamine-functionalized iron oxide nanoparticles. Biosens Bioelectron 26:3044–3049CrossRefGoogle Scholar
  118. 118.
    Uludağ Y, Tothill IE (2010) Development of a sensitive detection method of cancer biomarkers in human serum (75%) using a quartz crystal microbalance sensor and nanoparticles amplification system. Talanta 82:277–282CrossRefGoogle Scholar
  119. 119.
    Su F, Xu C, Taya M, Murayama K, Shinohara Y, Nishimura SI (2008) Detection of carcinoembryonic antigens using a surface plasmon resonance biosensor. Sensors 8:4282–4295CrossRefGoogle Scholar
  120. 120.
    Laboria N, Fragoso A, Kemmner W, Latta D, Nilsson O, Botero ML, Drese K, O’Sullivan CK (2010) Amperometric immunosensor for carcinoembryonic antigen in colon cancer samples based on monolayers of dendritic bipodal scaffolds. Anal Chem 82:1712–1719CrossRefGoogle Scholar
  121. 121.
    Jiang W, Yuan R, Chai Y, Mao L, Su H (2011) A novel electrochemical immunoassay based on diazotization-coupled functionalized bioconjugates as trace labels for ultrasensitive detection of carcinoembryonic antigen. Biosens Bioelectron 26:2786–2790CrossRefGoogle Scholar
  122. 122.
    Liao JY (2007) Detection of human chorionic gonadotrophin hormone using a label-free epoxysilane-modified capacitive immunosensor. Appl Microbiol Biotechnol 74:1385–1391CrossRefGoogle Scholar
  123. 123.
    Mahler M, Fritzler MJ (2010) Epitope specificity and significance in systemic autoimmune diseases. Ann N Y Acad Sci 1183:267–287CrossRefGoogle Scholar
  124. 124.
    Agmon-Levin N, Lian ZX, Shoenfeld Y (2011) Explosion of autoimmune diseases and the mosaic of old and novel factors. Cell Mol Immunol 8:189–192CrossRefGoogle Scholar
  125. 125.
    Shoenfeld Y, Cervera R, Gershwin ME (2008) Diagnostic criteria in autoimmune diseases. Humana Press, Totowa, NJ, USACrossRefGoogle Scholar
  126. 126.
    Thaler M, Buhl A, Welter H, Schreiegg A, Kehrel M, Alber B, Metzger J, Luppa PB (2009) Biosensor analyses of serum autoantibodies: application to antiphospholipid syndrome and systemic lupus erythematosus. Anal Bioanal Chem 393:1417–1429CrossRefGoogle Scholar
  127. 127.
    Ayela C, Roquet F, Valera L, Granier C, Nicu L, Pugnière M (2007) Antibody–antigenic peptide interactions monitored by SPR and QCM-D, a model for SPR detection of IA-2 autoantibodies in human serum. Biosens Bioelectron 22:3113–3119CrossRefGoogle Scholar
  128. 128.
    de Gracia Villa M, Jiménez-Jorquera C, Haro I, Gomara MJ, Sanmartí R, Fernández-Sánchez C, Mendoza E (2011) Carbon nanotube composite peptide-based biosensors as putative diagnostic tools for rheumatoid arthritis. Biosens Bioelectron 27:113–118CrossRefGoogle Scholar
  129. 129.
    Drouvalakis KA, Bangsaruntip S, Hueber W, Kozar LG, Utz PJ, Dai H (2008) Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum. Biosens Bioelectron 23:1413–1421CrossRefGoogle Scholar
  130. 130.
    Metzger J, von Landenberg P, Kehrel M, Buhl A, Lackner KJ, Luppa PB (2007) Biosensor analysis of β2-glycoprotein I–reactive autoantibodies: evidence for isotype-specific binding and differentiation of pathogenic from infection-induced antibodies. Clin Chem 53:1137–1143CrossRefGoogle Scholar
  131. 131.
    Konstantinov KN, Sitdikov RA, Lopez GP, Atanassov P, Rubin RL (2009) Rapid detection of anti-chromatin autoantibodies in human serum using a portable electrochemical biosensor. Biosens Bioelectron 24:1949–1954CrossRefGoogle Scholar
  132. 132.
    Lai NS, Wang CC, Chiang HL, Chau LK (2007) Detection of antinuclear antibodies by a colloidal gold modified optical fiber: comparison with ELISA. Anal Bioanal Chem 388:901–907CrossRefGoogle Scholar
  133. 133.
    Porfir’eva AV, Evtyugin GA, Podshivalina EY, Anchikova LI, Budnikov GK (2007) A potentiometric DNA sensor for determining autoimmune antibodies to DNA. J Anal Chem 62:1180–1186CrossRefGoogle Scholar
  134. 134.
    Evtugyn GA, Porfireva AV, Hianik T, Cheburova MS, Budnikov HC (2008) Potentiometric DNA sensor based on electropolymerized phenothiazines for protein detection. Electroanalysis 20:1300–1308CrossRefGoogle Scholar
  135. 135.
    Fakhrullin RF, Vinter VG, Zamaleeva AI, Matveeva MV, Kourbanov RA, Temesgen BK, Ishmuchametova DG, Abramova ZI, Konovalova OA, Salakhov MK (2007) Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Anal Bioanal Chem 388:367–375CrossRefGoogle Scholar
  136. 136.
    Buhl A, Metzger JH, Heegaard NHH, von Landenberg P, Fleck M, Luppa PB (2007) Novel biosensor-based analytic device for the detection of anti-double-stranded DNA antibodies. Clin Chem 53:334–341CrossRefGoogle Scholar
  137. 137.
    Fiegel F, Buhl A, Jaekel HP, Werle E, Schmolke M, Ollert M, Luppa PB (2010) Autoantibodies to double-stranded DNA-intermethod comparison between four commercial immunoassays and a research biosensor-based device. Lupus 19:957–964CrossRefGoogle Scholar
  138. 138.
    da Silva Neves MMP, González-Garcia MB, Nouws HPA, Delerue-Matos C, Santos-Silva A, Costa-García A (2010) Celiac disease diagnosis and gluten-free food analytical control. Anal Bioanal Chem 397:1743–1753CrossRefGoogle Scholar
  139. 139.
    Balkenhohl T, Lisdat F (2007) Screen-printed electrodes as impedimetric immunosensors for the detection of anti-transglutaminase antibodies in human sera. Anal Chim Acta 597:50–57CrossRefGoogle Scholar
  140. 140.
    Dulay S, Luzano-Sánchez P, Iwuoha E, Katakis I, O’Sullivan CK (2011) Electrochemical detection of celiac disease-related anti-tissue transglutaminase antibodies using thiol based surface chemistry. Biosens Bioelectron 26:3852–3856CrossRefGoogle Scholar
  141. 141.
    Bei R, Masuelli L, Palumbo C, Modesti M, Modesti A (2009) A common repertoire of autoantibodies is shared by cancer and autoimmune disease patients: inflammation in their induction and impact on tumor growth. Cancer Lett 281:8–23CrossRefGoogle Scholar
  142. 142.
    Ladd J, Lu H, Taylor AD, Goodell V, Disis ML, Jiang S (2009) Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids Surf B 70:1–6CrossRefGoogle Scholar
  143. 143.
    Xia N, Liu L, Harrington MG, Wang J, Zhou F (2010) Regenerable and simultaneous surface plasmon resonance detection of Aβ(1-40) and Aβ(1-42) peptides in cerebrospinal fluids with signal amplification by streptavidin conjugated to an N-terminus-specific antibody. Anal Chem 82:10151–10157CrossRefGoogle Scholar
  144. 144.
    Krištofiková Z, Bocková M, Hegnerová K, Bartoš A, Klaschka J, Říčný J, Řípová D, Homola J (2009) Enhanced levels of mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 in patients with Alzheimer disease and multiple sclerosis. Mol Biosyst 5:1174–1179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology Institute for Microstructure TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations