• Hongjun Dong
  • Wenwen Tao
  • Zongjie Dai
  • Liejian Yang
  • Fuyu Gong
  • Yanping Zhang
  • Yin LiEmail author
Part of the Advances in Biochemical Engineering Biotechnology book series (ABE, volume 128)


China initiated its acetone–butanol–ethanol (ABE) industry in the 1950s; it peaked in the 1980s, and ended at the end of the last century owing to the development of more competitive petrochemical pathways. However, driven by the high price of crude oil and environmental concerns raised by the over-consumption of petrochemical products, biofuels and bio-based chemicals including butanol have garnered global attention again. Currently, butanol produced from ABE fermentation is mainly used as an industrial solvent or a platform chemical for several bulk derivatives, and is also believed to be a potential biofuel. A number of plants have been built or rebuilt in recent years in China for butanol production with the ABE process. Chinese researchers also show great interest in the improvement of the production strains and corresponding processes. They have applied conventional mutagenesis methods to improve butanol-producing strains such as the Clostridium acetobutylicum mutant strains EA2018 (butanol ratio of 70%) and Rh8 (butanol tolerance of 19 g/L). The omics technologies, such as genome sequencing, proteomic and transcriptomic analysis, have been adapted to elucidate the characteristics of different butanol-producing bacteria. Based on the group II intron method, the genetic manipulation system of C. acetobutylicum was greatly improved, and some successful engineering strains were developed. In addition, research in China also covers the downstream processes. This article reviews up-to-date progress on biobutanol production in China.


Acetone–butanol–ethanol industry Biobutanol China Clostridium acetobutylicum Genomics Strain engineering 


  1. 1.
    Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187:7103–7118CrossRefGoogle Scholar
  2. 2.
    Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186:1959–1971CrossRefGoogle Scholar
  3. 3.
    Bao G, Wang R, Zhu Y et al (2011) Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent producing strain with multi-replicon genome architecture. J Bacteriol:doi: 10.1128/JB.05596-11
  4. 4.
    Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50(5):1165–1170Google Scholar
  5. 5.
    Chen L, Xin C, Deng P et al (2010) Butanol production from hydrolysate of Jerusalem artichoke juice by Clostridium acetobutylicum L7. Chin J Biotechnol 26(7):991–996Google Scholar
  6. 6.
    Chiao J, Cheng Y, Shen Y et al (1960) Studies on the continuous acetone-butanol fermentation. Acta Microbiol Sin 10:137–148Google Scholar
  7. 7.
    Chiao J, Sun Z (2007) History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol 13:12–14CrossRefGoogle Scholar
  8. 8.
    Desai R, Papoutsakis E (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65:936–945Google Scholar
  9. 9.
    Dong H, Tao W, Zhu L et al (2011) CAC2634-disrupted mutant of Clostridium acetobutylicum can be electrotransformed in air. Lett Appl Microbiol 53(3):379-82.doi: 10.1111/j.1472-765X.2011.03111.x Google Scholar
  10. 10.
    Dong H, Zhang Y, Dai Z et al (2010) Engineering Clostridium strain to accept unmethylated DNA. PLoS One 5(2):e9038CrossRefGoogle Scholar
  11. 11.
    Dyr J, Munk V (1954) Biosynthesis of riboflavin by Clostridium acetobutylicum. Chekhoslovatskaia Biol 3(1):23–29Google Scholar
  12. 12.
    Fan J, Feng W, Di S et al (2010) Production of butanol from sugar beet molasses by fed-batch fermentation. Chin J Bioprocess Eng 8:6–9Google Scholar
  13. 13.
    Green EM (2011) Fermentative production of butanol–the industrial perspective. Curr Opin Biotech 22:337–343Google Scholar
  14. 14.
    Green EM, Boynton ZL, Harris LM et al (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086CrossRefGoogle Scholar
  15. 15.
    Gu Y, Ding Y, Ren C et al (2010) Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics 11(1):255CrossRefGoogle Scholar
  16. 16.
    Gu Y, Li J, Zhang L et al (2009) Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J Biotechnol 143(4):284–287CrossRefGoogle Scholar
  17. 17.
    Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184(13):3586–3597CrossRefGoogle Scholar
  18. 18.
    Heap JT and Minton NP (2009) Methods. PCT/GB2009/000380Google Scholar
  19. 19.
    Heap JT, Pennington OJ, Cartman ST et al (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70(3):452–464CrossRefGoogle Scholar
  20. 20.
    Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859Google Scholar
  21. 21.
    Hu C, Du Y, Yang Y (2007) Preliminary study on coupling between biodiesels and acetone-butanol fermentation. Chin J Process Eng 5(1):27–33Google Scholar
  22. 22.
    Hu S, Zheng H, Gu Y et al (2011) Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics 12:1471–2164Google Scholar
  23. 23.
    Jia K, Zhu Y, Zhang Y et al (2011) Group II intron-anchored gene deletion in Clostridium. PLoS One 6(1):e16693CrossRefGoogle Scholar
  24. 24.
    Jiang Y, Xu C, Dong F et al (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291CrossRefGoogle Scholar
  25. 25.
    Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17(3):223–232CrossRefGoogle Scholar
  26. 26.
    Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524Google Scholar
  27. 27.
    Karberg M, Guo H, Zhong J et al (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19(12):1162–1167CrossRefGoogle Scholar
  28. 28.
    Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647Google Scholar
  29. 29.
    Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101(2):209–228CrossRefGoogle Scholar
  30. 30.
    Li D, Chen H (2007) Fermentation of acetone and butanol coupled with enzymatic hydrolysis of steam exploded cornstalk stover in a membrane reactor. Chin J Process Eng 7(6):1212–1216Google Scholar
  31. 31.
    Liu S, Qureshi N (2009) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. New Biotechnol 26:117–121CrossRefGoogle Scholar
  32. 32.
    Liu Z, Ying Y, Li F et al (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37(5):495–501CrossRefGoogle Scholar
  33. 33.
    Luo J, Yi S, Su Y et al (2010) Separation and concentration of butanol from acetone-butanol-ethanol mixed solution by pervaporation. Chem Eng 38(2):43–46Google Scholar
  34. 34.
    Mao S, Luo Y, Bao G et al (2011) Comparative analysis on the membrane proteome of Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. Mol BioSyst 7:1660–1677CrossRefGoogle Scholar
  35. 35.
    Mermelstein LD, Welker NE, Bennett GN et al (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology (NY) 10(2):190–195CrossRefGoogle Scholar
  36. 36.
    Mills DA, Manias DA, McKay LL et al (1997) Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J Bacteriol 179(19):6107Google Scholar
  37. 37.
    Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31–130CrossRefGoogle Scholar
  38. 38.
    Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):415–423CrossRefGoogle Scholar
  39. 39.
    Nolling J, Breton G, Omelchenko M et al (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838CrossRefGoogle Scholar
  40. 40.
    Ounine K, Petitdemange H, Raval G et al (1985) Regulation and butanol inhibition of D-xylose and d-glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol 49:874–878Google Scholar
  41. 41.
    Qureshi N, Ezeji TC, Ebener J et al (2008) Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99(13):5915–5922CrossRefGoogle Scholar
  42. 42.
    Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30(6):419–427CrossRefGoogle Scholar
  43. 43.
    Ren C, Gu Y, Hu S et al (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12:446–454CrossRefGoogle Scholar
  44. 44.
    Rodriguez SA, Davis G, Klose KE (2009) Targeted gene disruption in Francisella tularensis by group II introns. Methods 49(3):270–274CrossRefGoogle Scholar
  45. 45.
    Shao L, Hu S, Yang Y et al (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17:963–965CrossRefGoogle Scholar
  46. 46.
    Soucaille P, Figge R, Croux C (2008) Process for chromosomal integration and DNA sequence replacement in clostridia. PCT/EP2006/066997Google Scholar
  47. 47.
    Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186(7):2006–2018CrossRefGoogle Scholar
  48. 48.
    Tummala SB, Welker NE, Papoutsakis ET (2003) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol 185(6):1923–1934CrossRefGoogle Scholar
  49. 49.
    Vollherbst-Schneck K, Sands J, Montenecourt B (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 47(1):193–194Google Scholar
  50. 50.
    Wang S, Zhang Y, Dong H et al (2011) Formic acid triggers the “acid crash” of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 77(5):1674–1680CrossRefGoogle Scholar
  51. 51.
    Yang X, Tsai GJ, Tsao GT (1994) Enhancement of in situ adsorption on the acetone-butanol fermentation by Clostridium acetobutylicum. Sep Tectmol 4(2):81–92CrossRefGoogle Scholar
  52. 52.
    Yang X, Tsao GT (1995) Enhanced acetone-butanol fermentation using repeated fed-batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption. Biotechnol Bioeng 47:444–450CrossRefGoogle Scholar
  53. 53.
    Zhang Y, Chen J, Yang Y et al (1996) Breeding high-ratio butanol strains of Clostridium acetobutylicum and application to industrial production. Indust Microbiol 26:1–6Google Scholar
  54. 54.
    Zhang Y, Chen J, Yang Y et al (1996) Breeding of high-ratio butanol strains of Clostridicum acetobutylicum and application to industrial production. Ind Microbiol 26(4):1–6Google Scholar
  55. 55.
    Zhang Y, Zhu Y, Li Y (2009) The importance of engineering physiological functionality into microbes. Trends Biotechnol 27(12):664–672CrossRefGoogle Scholar
  56. 56.
    Zhou H, Su Y, Yi S et al (2010) Effect of acetone and ethanol on pervaporation separation of butanol. CIESC J 61(5):1143–1150Google Scholar
  57. 57.
    Zhu L, Dong H, Zhang Y et al (2011) Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng 13:426–434CrossRefGoogle Scholar
  58. 58.
    Zverlov VV, Berezina O, Velikodvorskaya GA et al (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol Bioeng 71:587–597CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hongjun Dong
    • 1
  • Wenwen Tao
    • 1
  • Zongjie Dai
    • 2
  • Liejian Yang
    • 1
  • Fuyu Gong
    • 1
  • Yanping Zhang
    • 1
  • Yin Li
    • 1
    Email author
  1. 1.Institute of Microbiology, Chinese Academy of SciencesBeijingChina
  2. 2.Department of Biochemistry and Molecular Biology, School of Life ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations