Advertisement

Establishing Oleaginous Microalgae Research Models for Consolidated Bioprocessing of Solar Energy

  • Dongmei Wang
  • Yandu Lu
  • He Huang
  • Jian Xu
Part of the Advances in Biochemical Engineering Biotechnology book series (ABE, volume 128)

Abstract

Algal feedstock is the foundation of the emerging algal biofuel industry. However, few algae found in nature have demonstrated the combination of high biomass accumulation rate, robust oil yield and tolerance to environmental stresses, all complex traits that a large-scale, economically competitive production scheme demands. Therefore, untangling the intricate sub-cellular networks underlying these complex traits, in one or a series of carefully selected algal research models, has become an urgent research mission, which can take advantage of the emerging model oleaginous microalgae that have already demonstrated small, simple and tackleable genomes and the potential for large-scale open-pond cultivation. The revolutions in whole-genome-based technologies, coupled with systems biology, metabolic engineering and synthetic biology approaches, would enable the rational design and engineering of algal feedstock and help to fill the gaps between the technical and economical reality and the enormous potential of algal biofuels.

Graphical Abstract

In a “Consolidated Bio-processing of Solar Energy” (CBP-SE) scheme, a number of traditionally discrete processing steps, including photosynthesis, accumulation of energy storage compounds, and production of ethanol, biodiesel, advanced biofuel, high-value chemicals and food additives are consolidated into a single processing step, typically in a single cell or cellular system. Nannochloropsis spp. can serve as a research model and production strains for CBP-SE.

Keywords

Biofuels Functional genomics Oil-producing algae Research models Synthetic biology Systems biology 

Notes

Acknowledgments

We apologize to the many researchers whose past and ongoing works contributed to the development of microalgal energy in China but were not cited in this brief review.

References

  1. 1.
    NBSC (2010) Statistic yearbook of China (National Bureau of Statistics of China).http://wwwstatsgovcn/tjsj/ndsj/2010/indexchhtmBeijing China
  2. 2.
    Li YG, Xu L, Huang YM, Wang F, Guo C, et al (2011) Microalgal biodiesel in China: opportunities and challenges. Appl EnerGoogle Scholar
  3. 3.
    Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796CrossRefGoogle Scholar
  4. 4.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  5. 5.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  6. 6.
    Sheehan J (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae: National Renewable Energy Laboratory Golden, COGoogle Scholar
  7. 7.
    Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57:223–231CrossRefGoogle Scholar
  8. 8.
    Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012CrossRefGoogle Scholar
  9. 9.
    Roessler PG, Bleibaum JL, Thompson GA, Ohlrogge JB (1994) Characteristics of the gene that encodes acetyl CoA carboxylase in the diatom Cyclotella crypticaa. Ann NY Acad Sci 721:250–256CrossRefGoogle Scholar
  10. 10.
    Roessler P, Ohlrogge J (1993) Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. J Biol Chem 268:19254Google Scholar
  11. 11.
    Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M et al (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391CrossRefGoogle Scholar
  12. 12.
    Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52CrossRefGoogle Scholar
  13. 13.
    Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245CrossRefGoogle Scholar
  14. 14.
    Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  15. 15.
    Rebolloso-Fuentes M, Navarro-Perez A, Garcia-Camacho F, Ramos-Miras J, Guil-Guerrero J (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem 49:2966–2972CrossRefGoogle Scholar
  16. 16.
    Lubián LM, Montero O, Moreno-Garrido I, Huertas IE, Sobrino C et al (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 12:249–255CrossRefGoogle Scholar
  17. 17.
    Karlson B, Potter D, Kuylenstierna M, Andersen R (1996) Ultrastructure, pigment composition, and 18S rRNA gene sequence for Nannochloropsis granulata sp nov. (Monodopsidaceae, Eustigmatophyceae), a marine ultraplankter isolated from the Skagerrak, northeast Atlantic Ocean. Phycologia 35:253–260CrossRefGoogle Scholar
  18. 18.
    Li SS, Tsai HJ (2009) Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol 26:316–325CrossRefGoogle Scholar
  19. 19.
    Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J et al (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell Online 22:2943CrossRefGoogle Scholar
  20. 20.
    Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268CrossRefGoogle Scholar
  21. 21.
    Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci 104:7705CrossRefGoogle Scholar
  22. 22.
    Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28CrossRefGoogle Scholar
  23. 23.
    Armbrust E, Berges JA, Bowler C, Green BR, Martinez D et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79CrossRefGoogle Scholar
  24. 24.
    Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:23–244CrossRefGoogle Scholar
  25. 25.
    Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V et al (2009) Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One 4:e7458CrossRefGoogle Scholar
  26. 26.
    Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B et al (2009) Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol Adv 27:340–347CrossRefGoogle Scholar
  27. 27.
    Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic cell 9:97CrossRefGoogle Scholar
  28. 28.
    Corellou F, Schwartz C, Motta JP, Djouani-Tahri EB, Sanchez F et al (2009) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell Online 21:3436CrossRefGoogle Scholar
  29. 29.
    Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nat 447:1126–1129CrossRefGoogle Scholar
  30. 30.
    Zhao T, Li G, Mi S, Li S, Hannon GJ et al (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190CrossRefGoogle Scholar
  31. 31.
    Yang BJ, Zheng L, Chen JH, Zang JY, Wang XR et al (2009) Cluster analysis on fatty acid composition of Enteromorpha prolifera off northern China coast. Oceanol Limnol Sin 40:627–632Google Scholar
  32. 32.
    Hu Z, An M, Duan S, Xu N, Sun K et al (2009) Effects of nitrogen sources on the growth, contents of total lipids and total hydrocarbons of Botryococcus braunii. Acta Ecol Sin 29:3288–3294Google Scholar
  33. 33.
    Li Y, Huang J, Sandmann G, Chen F (2008) Glucose sensing and the mitochondrial alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228:735–743CrossRefGoogle Scholar
  34. 34.
    Huang J, Liu J, Li Y, Chen F (2008) Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol 44:684–690CrossRefGoogle Scholar
  35. 35.
    Huang JC, Chen F, Sandmann G (2006) Stress-related differential expression of multiple [beta]-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185CrossRefGoogle Scholar
  36. 36.
    Huang JC, Wang Y, Sandmann G, Chen F (2006) Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 71:473–479CrossRefGoogle Scholar
  37. 37.
    Liu J, Zhong Y, Sun Z, Huang J, Sandmann G et al (2010) One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 232:61–67CrossRefGoogle Scholar
  38. 38.
    Li Y, Huang J, Sandmann G, Chen F (2009) High light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). J Phycol 45:635–641CrossRefGoogle Scholar
  39. 39.
    Chen T, Wei D, Chen G, Wang Y, Chen F (2009) Employment of organic acids to enhance astaxanthin formation in heterotrophic Chlorella zofingiensis. J Food Process Preserv 33:271–284CrossRefGoogle Scholar
  40. 40.
    Wu Z, Chen G, Chong S, Mak N, Chen F, et al. (2010) Ultraviolet-B radiation improves astaxanthin accumulation in green microalga Haematococcus pluvialis. Biotechnol Lett: 1–4Google Scholar
  41. 41.
    Liu J, Huang J, Sun Z, Zhong Y, Jiang Y et al (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110CrossRefGoogle Scholar
  42. 42.
    Zhang X, Pan L, Wei X, Gao H, Liu J (2007) Impact of astaxanthin-enriched algal powder of Haematococcus pluvialis on memory improvement in BALB/c mice. Environ Geochem Health 29:483–489CrossRefGoogle Scholar
  43. 43.
    Liu J, Zhang X, Sun Y, Lin W (2010) Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals. Chin J Oceanol Limnol 28:1–9CrossRefGoogle Scholar
  44. 44.
    Qin S, Liu GX, Hu ZY (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem 43:795–802CrossRefGoogle Scholar
  45. 45.
    Lu Y, Jiang P, Liu S, Gan Q, Cui H et al (2010) Methyl jasmonate-or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of [beta]-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474CrossRefGoogle Scholar
  46. 46.
    Deng Z, Yan C, Lu F, Hu Q, Hu Z (2008) Growth kinetics of 1–2 mm and 3–4 mm colonies of Nostoc spheroides (Cyanophyta) in outdoor culture. Biotechnol Lett 30:1741–1746CrossRefGoogle Scholar
  47. 47.
    Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  48. 48.
    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846CrossRefGoogle Scholar
  49. 49.
    Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36CrossRefGoogle Scholar
  50. 50.
    Li X, Xu H, Wu Q (2007) Large scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771CrossRefGoogle Scholar
  51. 51.
    Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761CrossRefGoogle Scholar
  52. 52.
    Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294CrossRefGoogle Scholar
  53. 53.
    Wei D, Liu L (2008) Optimization of culture medium for heterotrophic Chlorella protothecoides producing total fatty acids. Chem Bioeng 3 25(3):35–40Google Scholar
  54. 54.
    Xie J, Zhang Y, Li Y, Wang Y (2001) Mixotrophic cultivation of Platymonas subcordiformis. J Appl Phycol 13:343–347CrossRefGoogle Scholar
  55. 55.
    Wang Y, Li Y, Shi D, Shen G, Ru B et al (2002) Characteristics of mixotrophic growth of Synechocystis sp in an enclosed photobioreactor. Biotechnol Lett 24:1593–1597CrossRefGoogle Scholar
  56. 56.
    Yu G, Li Y, Shen G, Wang W, Lin C et al (2009) A novel method using CFD to optimize the inner structure parameters of flat photobioreactors. J Appl Phycol 21:719–727CrossRefGoogle Scholar
  57. 57.
    Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189CrossRefGoogle Scholar
  58. 58.
    Su Z, Kang R, Shi S, Cong W, Cai Z (2008) An economical device for carbon supplement in large-scale micro-algae production. Bioprocess Biosyst Eng 31:641–645CrossRefGoogle Scholar
  59. 59.
    Su Z, Kang R, Shi S, Cong W, Cai Z (2010) An effective gas-liquid transmission device in the enclosed microalgae cultivation. Appl Biochem Biotechnol 160:428–437CrossRefGoogle Scholar
  60. 60.
    Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718CrossRefGoogle Scholar
  61. 61.
    Vick B, Kilian O (2009) VCP-based vectors for algal cell transformation. US Patent App. 20,090/317,904Google Scholar
  62. 62.
    Cha TS, Chen CF, Yee W, Aziz A, Loh SH (2011) Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434CrossRefGoogle Scholar
  63. 63.
    Chen HL, Li SS, Huang R, Tsai HJ (2008) Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). J Phycol 44:768–776CrossRefGoogle Scholar
  64. 64.
    Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534CrossRefGoogle Scholar
  65. 65.
    Blowers AD, Bogorad L, Shark KB, Sanford JC (1989) Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell Online 1:123CrossRefGoogle Scholar
  66. 66.
    Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821Google Scholar
  67. 67.
    Nakao M, Okamoto S, Kohara M, Fujishiro T, Fujisawa T et al (2010) CyanoBase: the cyanobacteria genome database update. Nucleic Acids Res 38:D379CrossRefGoogle Scholar
  68. 68.
    Porter RD (1986) Transformation in cyanobacteria. Crit Rev Microbiol 13:111CrossRefGoogle Scholar
  69. 69.
    Vioque A (2007) Transformation of cyanobacteria. In: León R, Gaván A, Fernández E, (eds) Transgenic Microalgae as Green Cell Factories. Springer pp 12–22Google Scholar
  70. 70.
    Tredici MR (2008) Microalgae biofuels: Potential and limitations. Microalgae Biomass Summit Seattle, Wash: Algal Biomass Organization 815–820Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy GeneticsBioEnergy Genome CenterQingdaoChina
  2. 2.State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of TechnologyNanjingChina

Personalised recommendations