Advertisement

Cultivation-independent Assessment of Bacterial Viability

  • Frederik HammesEmail author
  • Michael Berney
  • Thomas Egli
Chapter
Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 124)

Abstract

Cultivation-independent assessment of bacterial viability is essential when (1) results are required fast and at high throughput, and/or (2) when the specific target or mode-of-action of a certain bactericidal process is of interest, and/or (3) when the organisms under investigation are regarded as “uncultivable”. However, aside from cultivation, there exists no “silver bullet” method that demonstrates with absolute certainty whether an organism is alive or dead, and all currently available methods are prone to produce varying results with different organisms and in different environments. Here we discuss the fundamental concept of viability in bacteria, with specific focus on the main aspects that define it. It is argued that the presence of intact and functional nucleic acids, as well as an intact and polarized cytoplasmic membrane are essential components of cellular viability, while numerous other parameters and processes that are linked to viability are explored. Different methods/approaches are discussed with particular emphasis on the advantages and disadvantages of each approach, the applicability of the methods toward environmental samples, and the underlying link between the various viability parameters.

Graphical Abstract

Keywords

Activity Bacteria Flow cytometry Membrane potential Viability 

References

  1. 1.
    Al-Adhami BH, Nichols RAB, Kusel JR, O’Grady JO, Smith HV (2007) Detection of UV-induced thymine dimers in individual Cryptosporidium parvum and Cryptosporidium hominis oocysts by immunofluorescence microscopy. Appl Environ Microbiol 73:947–995CrossRefGoogle Scholar
  2. 2.
    Asano S, Iijima K, Suzuki K, Motoyama Y, Ogata T, Kitagawa Y (2009) Rapid detection and identification of beer-spoilage lactic acid bacteria by microcolony method. J Biosci Bioeng 108:124–129CrossRefGoogle Scholar
  3. 3.
    Ateya DA, Erickson JS, Howell PB, Hilliard LR, Golden JP, Ligler FS (2008) The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem 391:1485–1498CrossRefGoogle Scholar
  4. 4.
    Berney M, Weilenmann HU, Egli T (2006) Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiol-SGM 152:1719–1729CrossRefGoogle Scholar
  5. 5.
    Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli, T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290CrossRefGoogle Scholar
  6. 6.
    Berney M, Vital M, Hülshoff I, Weilenmann HU, Egli T, Hammes F (2008) Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res 42:4010–4018CrossRefGoogle Scholar
  7. 7.
    Bogosian G, Bourneuf EF (2001) A matter of bacterial life and death. EMBO Rep 2:770–774CrossRefGoogle Scholar
  8. 8.
    Bosshard F, Berney M, Scheifele M, Weilenmann HU, Egli T (2009) Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry. Microbiol-SGM 155:1310–1317CrossRefGoogle Scholar
  9. 9.
    Bosshard F, Riedel K, Schneider T, Geiser C, Bucheli M, Egli T (2010) Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. Environ Microbiol. doi: 10.1111/j.1462-2910.2010.02268.x
  10. 10.
    Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD(R) BacLight (TM): application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86CrossRefGoogle Scholar
  11. 11.
    Breeuwer P, Abee T (2000) Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55:193–200CrossRefGoogle Scholar
  12. 12.
    Breeuwer JA, Abee T (2004) Assessment of the membrane potential, intracellular pH and respiration of bacteria employing fluorescence techniques. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, van Elsas JD (eds) Molecular microbial ecology manual, 2nd edn. Springer, pp 1563–1580. ISBN: 978-1-4020-2173-3Google Scholar
  13. 13.
    Brehm-Stecher B, Johnson EA (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 68:538–559CrossRefGoogle Scholar
  14. 14.
    Creach V, Baudoux AC, Bertru G, Le Rouzic B (2003) Direct estimate of active bacteria: CTC use and limitations. J Microbiol Methods 52:19–28CrossRefGoogle Scholar
  15. 15.
    Czechowska K, Johnson DR, van der Meer JR (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Curr Opin Microbiol 11:205–212CrossRefGoogle Scholar
  16. 16.
    Diaz M, Herrero M, Garcia LA, Quiros C (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48:385–407CrossRefGoogle Scholar
  17. 17.
    Dimroth P, Cook GM (2004) Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49:175–218CrossRefGoogle Scholar
  18. 18.
    Dubelaar GBJ, Gerritzen PL (2000) CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci Mar 64:255–265Google Scholar
  19. 19.
    Falcioni T, Papa S, Gasol JM (2008) Evaluating the flow-cytometric nucleic acid double-staining protocol in realistic situations of planktonic bacterial death. Appl Environ Microbiol 74:1767–1779CrossRefGoogle Scholar
  20. 20.
    Gasol JM, del Giorgio PM (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224CrossRefGoogle Scholar
  21. 21.
    Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagstrom A (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483Google Scholar
  22. 22.
    Hammes F, Egli T (2010) Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Anal Bioanal Chem 397:1083–1095CrossRefGoogle Scholar
  23. 23.
    Hammes F, Berney M, Wang Y, Vital M, Köster O, Egli T (2008) Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res 42:269–277CrossRefGoogle Scholar
  24. 24.
    Hammes F, Goldschmidt F, Vital M, Wang Y, Egli T (2010) Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Res 44:3915–3923CrossRefGoogle Scholar
  25. 25.
    Harris GD, Adams VD, Sorensen DL, Curtis MS (1987) Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. Water Res 21:687–692CrossRefGoogle Scholar
  26. 26.
    Hewitt CJ, Nebe-von Caron G (2004) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv Biochem Eng Biotechnol 89:197–223Google Scholar
  27. 27.
    Hewitt CJ, Nebe-Von Caron G, Axelsson B, McFarlane CM, Nienow AW (2000) Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70:381–390CrossRefGoogle Scholar
  28. 28.
    Hoefel D, Grooby WL, Monis PT, Andrews S, Saint CP (2003) Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques. J Microbiol Methods 55: 585–597CrossRefGoogle Scholar
  29. 29.
    Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji HKP (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci USA 106:15651–15656CrossRefGoogle Scholar
  30. 30.
    Jarnagina JL, Luchsingera DW (1980) The use of fluorescein diacetate and ethidium bromide as a stain for evaluating viability of Mycobacteria. Biotechnic and Histochemistry 55:253–258CrossRefGoogle Scholar
  31. 31.
    Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect 2:1523–1535CrossRefGoogle Scholar
  32. 32.
    Jung H (2001) Towards the molecular mechanism of Na(+)/solute symport in prokaryotes. Biochim Biophys Acta 1505:131–143CrossRefGoogle Scholar
  33. 33.
    Karner M, Fuhrman JA (1997) Determination of active marine bacterioplankton: a comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining. Appl Environ Microbiol 63:1208–1213Google Scholar
  34. 34.
    Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek 73:169–187CrossRefGoogle Scholar
  35. 35.
    Khlyntseva SV, Bazel YR, Vishnikin AB, Andruch V (2009) Methods for the determination of adenosine triphosphate and other adenine nucleotides. J Anal Chem 64:657–673CrossRefGoogle Scholar
  36. 36.
    King MA (2000) Detection of dead cells and measurement of cell killing by flow cytometry. J Immunol Methods 243:155–166CrossRefGoogle Scholar
  37. 37.
    Laussermair E, Schwarz E, Oesterhelt D, Reinke H, Beyreuther K, Dimroth P (1989). The sodium ion translocating oxaloacetate decarboxylase of Klebsiella pneumoniae. Sequence of the integral membrane-bound subunits beta and gamma. J Biol Chem 264:14710–14715Google Scholar
  38. 38.
    Lebaron P, Parthuisot N, Catala P (1998) Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl Environ Microbiol 64:1725–1730Google Scholar
  39. 39.
    Lebaron P, Servais P, Agogue H, Courties C, Joux F (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782CrossRefGoogle Scholar
  40. 40.
    Lisle JT, Pyle BH, McFeters GH (1999) The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7. Lett Appl Microbiol 29:42–47CrossRefGoogle Scholar
  41. 41.
    Looser V, Hammes F, Keller M, Berney M, Kovar K, Egli T (2005) Flow-cytometric detection of changes in the physiological state of E. coli expressing a heterologous membrane protein during carbon-limited fedbatch cultivation. Biotechnol Bioeng 92:69–78CrossRefGoogle Scholar
  42. 42.
    Lunde CS, Hartouni SR, Janc JW, Mammen M, Humphrey PP, Benton BM (2009) Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 53:3375–3383CrossRefGoogle Scholar
  43. 43.
    Madigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Pearson Benjamin Cummings, San FranciscoGoogle Scholar
  44. 44.
    Malacrino P, Zapparoli G, Torriani S, Dellaglio F (2001) Rapid detection of viable yeasts and bacteria in wine by flow cytometry. J Microbiol Methods 45:127–134CrossRefGoogle Scholar
  45. 45.
    McFeters GA, Yu FP, Pyle BH, Stewart PS (1995) Physiological assessment of bacteria using fluorochromes. J Microbiol Methods 21:1–13CrossRefGoogle Scholar
  46. 46.
    Müller S, Nebe-von Caron G (2010) Functional single-cell analyses–flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev. doi: 10.1111/j.1574-6976.2010.00214.x
  47. 47.
    Müller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21:100–113CrossRefGoogle Scholar
  48. 48.
    Nebe-von Caron G, Stephens P, Badley RA (1998) Assessment of bacterial viability status by flow cytometry and single cell sorting. J Appl Microbiol 84:988–998CrossRefGoogle Scholar
  49. 49.
    Nebe-von Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA (2000) Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods 42:97–114CrossRefGoogle Scholar
  50. 50.
    Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM (1999). Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 35:55–63CrossRefGoogle Scholar
  51. 51.
    Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM (2000) Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother 44:827–834CrossRefGoogle Scholar
  52. 52.
    Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100Google Scholar
  53. 53.
    Phe MH, Dossot M, Guilloteau H, Block JC (2005) Nucleic acid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria. Water Res 39:3618–3628CrossRefGoogle Scholar
  54. 54.
    Phe MH, Dossot M, Guilloteau H, Block JC (2007) Highly chlorinated Escherichia coli cannot be stained with propidium iodide. Can J Microbiol 53:664–670CrossRefGoogle Scholar
  55. 55.
    Porter J, Deere D, Pickup R, Edwards C (1996) Fluorescent probes and flow cytometry: new insights into environmental bacteriology. Cytometry 23:91–96CrossRefGoogle Scholar
  56. 56.
    Postgate JR (1969) Viable counts and viability. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 1. Academic Press Inc., LondonGoogle Scholar
  57. 57.
    Rao M, Streur TL, Aldwell FE, Cook GM (2001) Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology 147:1017–1024Google Scholar
  58. 58.
    Rappé M, Giovannoni S (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394CrossRefGoogle Scholar
  59. 59.
    Rodriquez GG, Phipps D, Ishiguro K, Ridgway HF (1992) Use of a fluorescent redox probe for direct visualisation of actively respiring bacteria. Appl Environ Microbiol 58:1801–1808Google Scholar
  60. 60.
    Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379Google Scholar
  61. 61.
    Saint-Ruf C, Cordier C, Megret J, Matic I (2010) Reliable detection of dead microbial cells using fluorescent hydrazides. Appl Environ Microbiol 76:1674–1678CrossRefGoogle Scholar
  62. 62.
    Schloss PD, Handelsman J (2004) Status of the microbial sensus. Microbiol Mol Biol Rev 68:686–691CrossRefGoogle Scholar
  63. 63.
    Schumann R, Schiewer U, Karsten U, Rieling T (2003) Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquat Microb Ecol 32:137–150CrossRefGoogle Scholar
  64. 64.
    Shapiro HM (1981) Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and Pyronin Y. Cytometry 2:143–150CrossRefGoogle Scholar
  65. 65.
    Shi L, Gunther S, Hubschmann T, Wick LY, Harms H, Müller S (2007) Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 71:592–598Google Scholar
  66. 66.
    Sträuber H, Müller S (2010) Viability states of bacteria--specific mechanisms of selected probes. Cytometry A 77:623–634Google Scholar
  67. 67.
    Tracy BP, Gaida SM, Papoutsakis ET (2010) Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr Opin Microbiol 21:85–99Google Scholar
  68. 68.
    Ullrich S, Karrasch B, Hoppe HG (1999) Is the CTC dye technique an adequate approach for estimating active bacterial cells? Aquat Microb Ecol 17:207–209CrossRefGoogle Scholar
  69. 69.
    Wang Y, Hammes F, Boon N, Chami M, Egli T (2009) Isolation and characterization of low nucleic acid (LNA)-content bacteria. ISME J 3:889–902CrossRefGoogle Scholar
  70. 70.
    Want A, Thomas ORT, Kara B, Liddel J, Hewitt CJ (2009) Studies related to antibody fragment (Fab) production in Escherichia coli W3110 fed-batch fermentation processes using multi-parameter flow cytometry. Cytometry A 75:148–154Google Scholar
  71. 71.
    Winding A, Binnerup SJ, Sorensen J (1994) Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl Environ Microbiol 60:2869–2875Google Scholar
  72. 72.
    Ziglio G, Andreottola G, Barbesti S, Boschetti G, Bruni L, Foladori P, Villa R (2002) Assessment of activated sludge viability with flow cytometry. Water Res 36:460–468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin heidelberg 2010

Authors and Affiliations

  1. 1.EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  2. 2.Department of Microbiology and ImmunologyOtago School of Medical Sciences, University of OtagoDunedinNew Zealand

Personalised recommendations