Enzymes for the Biofunctionalization of Poly(Ethylene Terephthalate)

Chapter
Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 125)

Abstract

The functionalization of synthetic polymers such as poly(ethylene terephthalate) to improve their hydrophilicity can be achieved biocatalytically using hydrolytic enzymes. A number of cutinases, lipases, and esterases active on polyethylene terephthalate have been identified and characterized. Enzymes from Fusarium solani, Thermomyces insolens, T. lanuginosus, Aspergillus oryzae, Pseudomonas mendocina, and Thermobifida fusca have been studied in detail. Thermostable biocatalysts hydrolyzing poly(ethylene terephthalate) are promising candidates for the further optimization of suitable biofunctionalization processes for textile finishing, technical, and biomedical applications.

Graphical Abstract

Keywords

Biofunctionalization Cutinase Enzymes Esterase Lipase Poly(ethylene terephthalate) Polyester Thermostability 

Abbreviations

AFM

Atomic force microscopy

BEB

Ethylene glycol dibenzyl ester

BHET

bis(2-hydroxyethyl terephthalate)

BHPT

bis(3-hydroxypropyl terephthalate)

CTR

Cyclo-tris–ethylene terephthalate, cyclic PET trimer

DET

Diethyl terephthalate

DMT

Dimethyl terephthalate

DP

Diethyl p-phthalate

DSC

Differential scanning calorimetry

EBT

1,2-Ethylene-bis-terephthalate

EMT

1,2-Ethylene-mono-terephthalate-mono(2-hydroxyethyl terephthalate)

ESCA

Electron spectroscopy for chemical analysis

FTIR

Fourier transform infrared spectroscopy

HPLC

High performance liquid chromatography

MEG

Monoethylene glycol

MHET

mono(2-hydroxyethyl) terephthalate

MHPT

mono(3-hydroxypropyl) terephthalate

PBT

1,2-Propylene-bis-terephthalate

PEG

Polyethylene glycol

PET

Poly(ethylene terephthalate)

PET dimer

bis-(p-methylbenzoic acid)-ethylene glycol ester

PET trimer

bis(benzoyloxyethyl) terephthalate

PTT

Poly(trimethylene terephthalate)

PCL

Poly(ε-caprolactone)

SEM

Scanning electron microscopy

Triton X-100

Octyl phenoxy polyethoxy ethanol

Tg

Glass transition temperature

Td

Thermal denaturation temperature

Tm

Melting temperature

TLC

Thin layer chromatography

TPA

Terephthalic acid

XPS

X-ray photoelectron spectroscopy

References

  1. 1.
    Abo M, Fukuyama S, Svendsen A, Matsui T (2004) Cutinase variants. US 6815190Google Scholar
  2. 2.
    Alisch M, Feuerhack A, Müller H, Mensak B, Andreaus J, Zimmermann W (2004) Biocatalytic modification of polyethylene terephthalate fibres esterases from actinomycete isolates. Biocatal Biotransform 22:347–351CrossRefGoogle Scholar
  3. 3.
    Alisch-Mark M, Herrmann A, Zimmermann W (2006) Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi. Biotechnol Lett 28:681–685CrossRefGoogle Scholar
  4. 4.
    Almansa E, Heumann S, Eberl A, Fischer-Colbrie G, Martinkova L, Marek J, Cavaco-Paulo A, Guebitz GM (2008) Enzymatic surface hydrolysis of PET enhances in PVC coating. Biocatal Biotransform 26:365–370CrossRefGoogle Scholar
  5. 5.
    Andersen BK, Borch K, Abo M, Damgaard B (1999) Method of treating polyester fabrics. US 5997584Google Scholar
  6. 6.
    Araújo R, Silva C, O’Neill A, Micaelo N, Guebitz GM, Soares C, Casal M, Cavaco-Paulo A (2007) Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J Biotechnol 128:849–857CrossRefGoogle Scholar
  7. 7.
    Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183CrossRefGoogle Scholar
  8. 8.
    Billig S, Oeser T, Birkemeyer C, Zimmermann W (2010) Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl Microbiol Biotech 87:1753–1764CrossRefGoogle Scholar
  9. 9.
    Boston M, Requadt C, Danko S, Jarnagin A, Ashizawa E, Wu S, Polouse AJ, Bott R (1997) Structure and function of engineered Pseudomonas mendocina lipase. Methods Enzymol 284:298–317CrossRefGoogle Scholar
  10. 10.
    Bott R, Kellis JT, Morrison TB (2003) High throughput mutagenesis screening method. WO Patent 03/076580 A2Google Scholar
  11. 11.
    Brueckner T, Eberl A, Heumann S, Rabe M, Gübitz GM (2008) Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics. J Polym Sci A Polym Chem 46:6435–6443CrossRefGoogle Scholar
  12. 12.
    Brzozowski AM, Derewenda U, Derewenda ZS, Dodson G, Lawson D, Turkenburg JP (1991) A model for interfacial activation in lipases from the structure of a fungal lipase–inhibitor complex. Nature 351:491–494CrossRefGoogle Scholar
  13. 13.
    Carvalho CM, Aires-Barros MR, Cabral JMS (1998) Cutinase structure, function and biocatalytic applications. Electron J Biotechnol 1:160–173CrossRefGoogle Scholar
  14. 14.
    Carvalho CM, Aires-Barros MR, Cabral JMS (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66:17–34CrossRefGoogle Scholar
  15. 15.
    Chahinian H, Ali YB, Abousalham A, Petry S, Mandrich L, Manco G, Canaan S, Sarda L (2005) Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: comparison with non-lipolytic and lipolytic carboxylesterases. Biochim Biophys Acta 1738:29–36Google Scholar
  16. 16.
    Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:3–54CrossRefGoogle Scholar
  17. 17.
    Chemical Market Asscociates Inc. (2010) world terephthalate and polyester analysis. http://www.cmaiglobal.com/WorldAnalysis/xylbook.aspx. Accessed 31 Mar 2010
  18. 18.
    Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283:25854–25862CrossRefGoogle Scholar
  19. 19.
    Chen S, Su L, Billig S, Zimmermann W, Chen J, Wu J (2010) Biochemical characterization of the cutinases from Thermobifida fusca. J Mol Catal B Enzym 63:121–127CrossRefGoogle Scholar
  20. 20.
    Deckwer W-D, Mueller R-J, Kleeberg I, van den Heuvel J (2006) Enzyme which cleaves ester groups and which is derived from Thermomonospora fusca. US 6995005Google Scholar
  21. 21.
    Derewenda ZS, Derewenda U, Dodson GG (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J Mol Biol 227:818–839CrossRefGoogle Scholar
  22. 22.
    Derewenda U, Swenson L, Green R, Wei Y, Yamaguchi S, Joerger R, Haas MJ, Derewenda ZS (1994) Current progress in crystallographic studies of new lipases from filamentous fungi. Protein Eng 7:551–557CrossRefGoogle Scholar
  23. 23.
    Donelli I, Taddei P, Smet PF, Poelman D, Nierstrasz VA, Freddi G (2009) Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR, and fluorescence spectroscopy study. Biotechnol Bioeng 103:845–856CrossRefGoogle Scholar
  24. 24.
    Dutta K, Sen S, Veeranik VD (2009) Production, characterization and applications of microbial cutinases. Process Biochem 44:127–134CrossRefGoogle Scholar
  25. 25.
    Dyson W, Kellis JT, Poulose AJ, Yoon MY (2005) Enzymes useful for changing the properties of polyester. US 6933140Google Scholar
  26. 26.
    Eberl A, Heumann S, Kotek R, Kaufmann F, Mitsche S, Cavaco-Paulo A, Gübitz GM (2008) Enzymatic hydrolysis of PTT polymers and oligomers. J Biotechnol 135:45–51CrossRefGoogle Scholar
  27. 27.
    Eberl A, Heumann S, Brückner T, Araújo R, Cavaco-Paulo A, Kaufmann F, Kroutil W, Guebitz GM (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143:207–212CrossRefGoogle Scholar
  28. 28.
    Fett WF, Wijey C, Moreau RA, Osman SF (1999) Production of cutinase by Thermomonospora fusca ATCC 27730. J Appl Microbiol 86:561–568CrossRefGoogle Scholar
  29. 29.
    Fernando G, Zimmermann W, Kolattukudy PE (1984) Suberin-grown Fusarium solani f. sp. pisi generates a cutinase like esterase which depolymerizes the aliphatic components of suberin. Plant Pathol 24:143–155Google Scholar
  30. 30.
    Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus. Uses and prospects as an industrial biocatalyst. J Mol Cat B Enzym 62:197–212CrossRefGoogle Scholar
  31. 31.
    Feuerhack A, Alisch-Mark M, Kisner A, Pezzin SH, Zimmermann W, Andreaus J (2008) Biocatalytic surface modification of knitted fabrics made of poly (ethylene terephthalate) with hydrolytic enzymes from Thermobifida fusca KW3b. Biocatal Biotransform 26:357–364CrossRefGoogle Scholar
  32. 32.
    Figueroa Y, Hinks D, Montero GA (2006) A heterogeneous kinetic model for the cutinase-catalyzed hydrolysis of cyclo-tris–ethylene terephthalate. Biotechnol Prog 22:1209–1214CrossRefGoogle Scholar
  33. 33.
    Fischer-Colbrie G, Heumann S, Liebminger S, Almansa E, Cavaco-Paulo A, Guebitz GM (2004) New enzymes with potential for PET surface modification. Biocatal Biotransform 22:341–346CrossRefGoogle Scholar
  34. 34.
    Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725CrossRefGoogle Scholar
  35. 35.
    Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Cygler M (1993) Insights into interfacial activation from an open structure for Candida rugosa lipase. J Biol Chem 268:12843–12847Google Scholar
  36. 36.
    Guebitz GM, Cavaco-Paulo A (2008) Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol 26:32–38CrossRefGoogle Scholar
  37. 37.
    Herzog K, Müller R-J, Deckwer W-D (2006) Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym Degrad Stab 91:2486–2498CrossRefGoogle Scholar
  38. 38.
    Heumann S, Eberl A, Pobeheim H, Liebminger S, Fischer-Colbrie G, Almansa E, Cavaco-Paulo A, Gübitz GM (2006) New model substrates for enzymes hydrolyzing polyethyleneterephthalate and polyamide fibres. J Biochem Biophys Methods 39:89–99CrossRefGoogle Scholar
  39. 39.
    Holmberg M, Hou XL (2010) Competitive protein adsorption of albumin and immunoglobulin G from human serum onto polymer surfaces. Langmuir 26:938–942CrossRefGoogle Scholar
  40. 40.
    Hooker J, Hinks D, Montero GA, Icherenska M (2003) Enzyme catalyzed hydrolysis of poly(ethylene terephthalate) cyclic trimer. J Appl Polym Sci 89:2545–2552CrossRefGoogle Scholar
  41. 41.
    Hsieh YL, Yu B (1992) Liquid wetting, transport, and retention properties of fibrous assemblies part I: water wetting properties of woven fabrics and their constituent single fibers. Text Res J 62:677–685Google Scholar
  42. 42.
    Hsieh YL (1995) Liquid transport in fabric structures. Text Res J 65:299–307CrossRefGoogle Scholar
  43. 43.
    Hsieh YL, Miller A, Thompson J (1996) Wetting, pore structure, and liquid retention of hydrolyzed polyester fabrics. Text Res J 66:1–10CrossRefGoogle Scholar
  44. 44.
    Hsieh YL, Cram LA (1998) Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Text Res J 68:311–319CrossRefGoogle Scholar
  45. 45.
    Hsieh YL, Hartzell MM, Boston MG, Clarkson KA, Collier KD, Graycar TP, Larenas EA (2003) Enzyme treatment to enhance wettability and absorbancy of textiles. US 2003/01191172Google Scholar
  46. 46.
    Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63CrossRefGoogle Scholar
  47. 47.
    Jelsch C, Longhi S, Cambillau C (1998) Packing forces in nine crystal forms of cutinase. Prot Struct Funct Genet 31:320–333CrossRefGoogle Scholar
  48. 48.
    Jump J, McCloskey S (2004) A method of treating polyester fabrics. WO 2004/059075 A1Google Scholar
  49. 49.
    Kellis J, Poulose AJ, Yoon MY (2001) Enzymatic modification of the surface of a polyester fiber or article. US 6254645 B1Google Scholar
  50. 50.
    Khoddami A, Morshed M, Tavani H (2001) Effects of enzymatic hydrolysis on drawn polyester filament yarns. Iran Polym J 10:363–370Google Scholar
  51. 51.
    Kim HR, Song WS (2006) Lipase treatment of polyester fabrics. Fibers Polym 7:243–339Google Scholar
  52. 52.
    Kim HR, Song WS (2008) Optimization of enzymatic treatment of polyester fabrics by lipase from porcine pancreas. Fibers Polym 9:423–430CrossRefGoogle Scholar
  53. 53.
    Kim HR, Song WS (2010) Optimization of papain treatment for improving the hydrophilicity of polyester fabrics. Fibers Polym 11:67–71CrossRefGoogle Scholar
  54. 54.
    Kim J, Yoon J (2002) Protein adsorption on polymer particles. In: Hubbard AT (ed) Encyclopedia of surface and colloid science, vol 4. Marcel Dekker, New YorkGoogle Scholar
  55. 55.
    Kint D, Monoz-Guerra M (1999) A review on the potential biodegradability of poly(ethylene terephthalate). Polym Int 48:352–364CrossRefGoogle Scholar
  56. 56.
    Kleeberg I, Welzel K, VandenHeuvel J, Müller R-J, Deckwer, W-D (2005) Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyester. Biomacromolecules 6:262–270CrossRefGoogle Scholar
  57. 57.
    Kolattukudy PE (1985) Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol 23:223–250CrossRefGoogle Scholar
  58. 58.
    Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000CrossRefGoogle Scholar
  59. 59.
    Kontkanen H, Saloheimo M, Pere J, Miettinen-Oinonen A, Reinikainen T (2006) Characterization of Melanocarpus albomyces steryl esterase produced in Trichoderma reesei and modification of fibre products with the enzyme. Appl Microbiol Biotechnol 72:696–704CrossRefGoogle Scholar
  60. 60.
    Lee SH, Song WS (2010) Surface modification of polyester fabrics by enzyme treatment. Fibers Polym 11:54–59CrossRefGoogle Scholar
  61. 61.
    Liebminger S, Eberl A, Fischer-Colbrie G, Heumann S, Guebitz GM (2007) Hydrolysis of PET and bis (benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocat Biotrans 25:171–177CrossRefGoogle Scholar
  62. 62.
    Liu Y, Wu G, Gu L (2008) Enzymatic treatment of PET fabrics for improved hydrophilicity. AATCC Rev 8:44–48Google Scholar
  63. 63.
    Liu Z, Gosser Y, Baker PJ, Ravee Y, Lu Z, Alemu G, Li H, Butterfoss GL, Kong XP, Gross R, Montclare JK (2009) Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. JACS 131:15711–15716CrossRefGoogle Scholar
  64. 64.
    Longhi S, Czjzek M, Lamizin V, Nicolas A, Cambillau C (1997) Atomic resolution (1.0 Å) crystal structure of Fusarium solani cutinase: stereochemical analysis. J Mol Biol 268:779–799CrossRefGoogle Scholar
  65. 65.
    Longhi S, Mannesse M, Verheij HM, Haas GH, Egmond M, Knoops-Mouthuy E, Cambillau C (1997) Crystal structure of cutinase covalently inhibited by a triglyceride analogue. Protein Sci 6:275–286CrossRefGoogle Scholar
  66. 66.
    Lykidis A, Mavromatis K, Ivanova I, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–2486CrossRefGoogle Scholar
  67. 67.
    Mannesse MLM, Cox RC, Koops BC, Verheij HM, de Haas GH, Egmond MR, van der Hijden HTWM, de Vlieg J (1995) Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. Biochemistry 34:6400–6407CrossRefGoogle Scholar
  68. 68.
    Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788CrossRefGoogle Scholar
  69. 69.
    Marten E, Müller RJ, Deckwer WD (2003) Studies on the enzymatic hydrolysis of polyester: I. Low molecular mass model esters and aliphatic polyesters. Polym Degrad Stab 80:485–501CrossRefGoogle Scholar
  70. 70.
    Marten E, Müller RJ, Deckwer WD (2005) Studies on the enzymatic hydrolysis of polyesters: II. Aliphatic-aromatic copolyesters. Polym Degrad Stab 88:371–381CrossRefGoogle Scholar
  71. 71.
    Martinez C, Geus P, Lauwereys M, Matthyssens G, Cambillau C (1992) Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356:615–618CrossRefGoogle Scholar
  72. 72.
    McCloskey SG, Jump JM (2005) Bio-polishing of polyester and polyester/cotton fabric. Textile Res J 75:480–484CrossRefGoogle Scholar
  73. 73.
    Melo EP, Aires-Barros MR, Costa L, Cabral JMS (1997) Thermal unfolding of proteins at high pH range studied by UV absorbance. J Biochem Biophys Methods 34:45–59CrossRefGoogle Scholar
  74. 74.
    Michels A, Pütz A, Maurer KH, Eggert T, Jäger KE (2006) Use of esterases for separating plastics. PCT/EP2006/007693Google Scholar
  75. 75.
    Müller RJ, Kleeberg I, Deckwer W-D (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95CrossRefGoogle Scholar
  76. 76.
    Müller RJ, Schrader H, Profe J, Dresler K, Deckwer WD (2005) Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 26:1400–1405CrossRefGoogle Scholar
  77. 77.
    Mueller RJ (2006) Biological degradation of synthetic polyesters. Enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128CrossRefGoogle Scholar
  78. 78.
    Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62:456–460Google Scholar
  79. 79.
    Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737CrossRefGoogle Scholar
  80. 80.
    Negulescu II, Despa S, Chen J, Collier BJ, Despa M, Denes A, Sarmadi M, Denes FS (2000) Characterizing polyester fabrics treated in electrical discharges of radio-frequency plasma. Text Res J 70:1–7CrossRefGoogle Scholar
  81. 81.
    Nelson RM, Long GL (1989) A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem 180:147–151CrossRefGoogle Scholar
  82. 82.
    Nimchua T, Punnapayak H, Zimmermann W (2007) Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi. Biotechnol J 2:361–364CrossRefGoogle Scholar
  83. 83.
    Nishida H, Tokiwa Y (1993) Effects of higher-order structure of poly(3-hydroxybutyrate) on biodegradation. ll Effects of crystal structure on microbial degradation. J Environ Polym Degrad 1:65–80CrossRefGoogle Scholar
  84. 84.
    O’Neill A, Cavaco-Paulo A (2004) Monitoring biotransformations in polyesters. Biocatal Biotransform 22:353–356CrossRefGoogle Scholar
  85. 85.
    O’Neill A, Araújo R, Casal M, Guebitz GM, Cavaco-Paulo A (2007) Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres. Enz Microbial Technol 40:1801–1805CrossRefGoogle Scholar
  86. 86.
    Oeser T, Wei R, Baumgarten T, Billig S, Föllner C, Zimmermann W (2010) High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). J Biotechnol 146:100–104CrossRefGoogle Scholar
  87. 87.
    Pütz A (2006) Isolierung, Identifizierung und biochemische Charakterisierung Dialkylphthalat spaltender Esterasen. PhD thesis, University DüsseldorfGoogle Scholar
  88. 88.
    Purdy RE, Kolattukudy PE (1973) Depolymerization of a hydroxy fatty-acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani pisi—isolation and some properties of the enzyme. Arch Biochem Biophys 159:61–69CrossRefGoogle Scholar
  89. 89.
    Purdy RE, Kolattukudy PE (1975) Hydrolysis of Plant Cuticle by Plant Pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi. Biochemistry 14:2823–2840Google Scholar
  90. 90.
    Riegels M, Kock R, Pedersen LS, Lund H (2001) Enzymatic hydrolysis of cyclic oligomers. US Patent 6184010Google Scholar
  91. 91.
    Ronkvist ÅM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromol 42:5128–5138CrossRefGoogle Scholar
  92. 92.
    Sandal T, Kauppinen S, Kofod LV (1996) An enzyme with lipolytic activity. WO Patent 96/13580Google Scholar
  93. 93.
    Sato M (1983) Deterioration of filaments and films of polyethyleneterephthalate with enzyme of Cladosporium cladosporioides FERM J-8. Sen’i Gakkaishi 39:T209–T219Google Scholar
  94. 94.
    Scandola M, Focarete ML, Frisoni G (1998) Simple kinetic model for the heterogenous enzymatic hydrolysis of natural poly(3-hydroxybutyrate). Macromolecules 31:3849–3851CrossRefGoogle Scholar
  95. 95.
    Sebastian J, Chandra AK, Kolattukudy PE (1987) Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in the phyllosphere. J Bacteriol 169:131136Google Scholar
  96. 96.
    Sebastian J, Kolattukudy PE (1988) Purification and characterization of cutinase from a fluorescent Pseudomonas putida bacterial strain isolated from phyllosphere. Arch Biochem Biophys 263:77–85CrossRefGoogle Scholar
  97. 97.
    Shukla SR, Mathur MR, Hedaoo VB (1997) Alkaline weight reduction of polyester fibers. Am Dyestuff Rep 86:48–56Google Scholar
  98. 98.
    Silva C, Carneiro F, O’Neill A, Fonseca LP, Cabral JSM, Guebitz GM, Cavaco-Paulo A (2005) Cutinase-a new tool for biomodification of synthetic fibres. J Appl Polym Sci A Polym Chem 43:2448–2450CrossRefGoogle Scholar
  99. 99.
    Silva C, Matama T, Cavaco-Paulo A (2010) Biotransformation of synthetic fibers. In: Flickinger MG (ed) Enzyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New YorkGoogle Scholar
  100. 100.
    Soane DS, Millward DB, Linford MR, Lau R, Green EG, Ware Jr W (2008) Hydrophilic finish for fibrous substrates. US patent 7427300Google Scholar
  101. 101.
    Svendsen A, Schroeder Gald SO, Fukuyama S, Matsui T (2005) Cutinase variants. US 6960459 B2Google Scholar
  102. 102.
    Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120:376–386CrossRefGoogle Scholar
  103. 103.
    Wang X, Lu D, Jönsson LJ, Hong F (2008) Preparation of a PET-hydrolyzing lipase from Aspergillus oryzae by the addition of bis(2-hydroxyethyl)terephthalate to the culture medium and enzymatic modification of PET fabrics. Eng Life Sci 8:268–276CrossRefGoogle Scholar
  104. 104.
    Welzel K, Müller R-J, Deckwer W-D (2002) Enzymatischer Abbau von Polyester-Nanopartikeln. Chem Ingenieur Tech 74:1496–1500CrossRefGoogle Scholar
  105. 105.
    Witt U, Müller R-J, Deckwer W-D (1997) Biodegradation behaviour and material properties of aliphatic/aromatic polyesters of commercial importance. J Environ Polym Degrad 5:81–89CrossRefGoogle Scholar
  106. 106.
    Yoo ES, Im SS (1999) Effect of crystalline and amorphous structures on biodegradability of poly(tetra methylene succinate). J Environ Polym Degrad 7:19–26CrossRefGoogle Scholar
  107. 107.
    Yoon MY, Kellis JT, Poulouse AJ (2002) Enzymatic modification of polyester. AATCC Rev 2:33–36Google Scholar
  108. 108.
    Zeronian SH and Collins MJ (1989) Surface modification of polyester by alkaline treatments. Text Progr 20:1–34CrossRefGoogle Scholar
  109. 109.
    Zhang J, Wang X, Gong J, Gu Z (2004) A study on the biodegradability of polyethylene terephthalate fiber and diethylene glycol terephthalate. J Appl Polym Sci 93:1089–1096CrossRefGoogle Scholar
  110. 110.
    Zhang J, Gong J, Shao S, Qin J, Gu Z (2006) Biodegradability of diethylene glycol terephthalate and poly(ethylene terephthalate) fiber by crude enzymes exracted from activated sludge. J Appl Polym Sci 100:3855–3859CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Microbiology and Bioprocess Technology, Institute of BiochemistryUniversity of LeipzigLeipzigGermany

Personalised recommendations