Light Microscopic Analysis of Mitochondrial Heterogeneity in Cell Populations and Within Single Cells

  • Stefan Jakobs
  • Stefan Stoldt
  • Daniel Neumann
Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 124)


Heterogeneity in the shapes of individual multicellular organisms is a daily experience. Likewise, even a quick glance through the ocular of a light microscope reveals the morphological heterogeneities in genetically identical cultured cells, whereas heterogeneities on the level of the organelles are much less obvious. This short review focuses on intracellular heterogeneities at the example of the mitochondria and their analysis by fluorescence microscopy. The overall mitochondrial shape as well as mitochondrial dynamics can be studied by classical (fluorescence) light microscopy. However, with an organelle diameter generally close to the resolution limit of light, the heterogeneities within mitochondria cannot be resolved with conventional light microscopy. Therefore, we briefly discuss here the potential of subdiffraction light microscopy (nanoscopy) to study inner-mitochondrial heterogeneities.

Graphical Abstract


Fluorescence microscopy Mitochondria Nanoscopy Single-cell heterogeneity Super-resolution microscopy 


GSD microscopy

Ground state depletion microscopy


Ground state depletion microscopy followed by individual molecule return


Mitochondrial membrane potential


Photoactivated localization microscopy


Reversible saturable/switchable optical linear (fluorescence) transitions

STED microscopy

Stimulated emission depletion microscopy


Stochastic optical reconstruction microscopy


Translocase of the outer membrane



We thank C.A. Wurm for insightful discussions and providing some of the STED images. We also thank R. Schmidt and A. Egner regarding STED microscopy of mitochondria, S.W. Hell for continuous support and J. Jethwa for carefully reading the manuscript. Part of the work reported in this review was supported by the Bundesministerium für Bildung und Forschung (BMBF) (SysCompart, to S.J.).


  1. 1.
    Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch f Mikroskop Anat 9:413–420Google Scholar
  2. 2.
    Amchenkova AA, Bakeeva LE, Chentsov YS et al (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J Cell Biol 107:481–495Google Scholar
  3. 3.
    Arimura S, Tsutsumi N (2002) A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc Natl Acad Sci USA 99:5727–5731Google Scholar
  4. 4.
    Barbe L, Lundberg E, Oksvold P et al (2008) Toward a confocal subcellular atlas of the human proteome. Mol Cell Proteomics 7:499–508Google Scholar
  5. 5.
    Benard G, Bellance N, James D et al (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848Google Scholar
  6. 6.
    Benda C (1898) Ueber dier Spermatogenese de Verbebraten und höherer Evertebraten, II. Theil: Die Histogenese der Spermien. Arch Anat Physiol 73:393–398Google Scholar
  7. 7.
    Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63Google Scholar
  8. 8.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645Google Scholar
  9. 9.
    Bodenstein-Lang J, Buch A, Follmann H (1989) Animal and plant mitochondria contain specific thioredoxins. FEBS Lett 258:22–26Google Scholar
  10. 10.
    Bogorad L (2008) Evolution of early eukaryotic cells: genomes, proteomes, and compartments. Photosynth Res 95:11–21Google Scholar
  11. 11.
    Born M, Wolf E (2002) Principles of optics. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662Google Scholar
  13. 13.
    Brocard JB, Rintoul GL, Reynolds IJ (2003) New perspectives on mitochondrial morphology in cell function. Biol Cell 95:239–242Google Scholar
  14. 14.
    Buckman JF, Reynolds IJ (2001) Spontaneous changes in mitochondrial membrane potential in cultured neurons. J Neurosci 21:5054–5065Google Scholar
  15. 15.
    Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9Google Scholar
  16. 16.
    Cassidy-Stone A, Chipuk JE, Ingerman E et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204Google Scholar
  17. 17.
    Cereghetti GM, Scorrano L (2006) The many shapes of mitochondrial death. Oncogene 25:4717–4724Google Scholar
  18. 18.
    Cerveny KL, Tamura Y, Zhang Z et al (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563–569Google Scholar
  19. 19.
    Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99Google Scholar
  20. 20.
    Collins TJ, Berridge MJ, Lipp P et al (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616–1627Google Scholar
  21. 21.
    Comeau JW, Costantino S, Wiseman PW (2006) A guide to accurate fluorescence microscopy colocalization measurements. Biophys J 91:4611–4622Google Scholar
  22. 22.
    Conrad C, Gerlich DW (2010) Automated microscopy for high-content RNAi screening. J Cell Biol 188:453–461Google Scholar
  23. 23.
    Costes SV, Daelemans D, Cho EH et al (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003Google Scholar
  24. 24.
    Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545Google Scholar
  25. 25.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219Google Scholar
  26. 26.
    De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156Google Scholar
  27. 27.
    Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879Google Scholar
  28. 28.
    Diaz G, Falchi AM, Gremo F et al (2000) Homogeneous longitudinal profiles and synchronous fluctuations of mitochondrial transmembrane potential. FEBS Lett 475:218–224Google Scholar
  29. 29.
    Diaz-Ruiz R, Averet N, Araiza D et al (2008) Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J Biol Chem 283:26948–26955Google Scholar
  30. 30.
    Distelmaier F, Koopman WJ, Testa ER et al (2008) Life cell quantification of mitochondrial membrane potential at the single organelle level. Cytometry A 73:129–138Google Scholar
  31. 31.
    Dlaskova A, Spacek T, Santorova J et al (2010) 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. Biochim Biophys Acta 1797:1327–1341Google Scholar
  32. 32.
    Donnert G, Keller J, Wurm CA et al (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–69Google Scholar
  33. 33.
    Dragunow M (2008) High-content analysis in neuroscience. Nat Rev Neurosci 9:779–788Google Scholar
  34. 34.
    Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci USA 99:3370–3375Google Scholar
  35. 35.
    Ehrenberg B, Montana V, Wei MD et al (1988) Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 53:785–794Google Scholar
  36. 36.
    Fernandez-Moreno MA, Bornstein B, Petit N et al (2000) The pathophysiology of mitochondrial biogenesis: towards four decades of mitochondrial DNA research. Mol Genet Metab 71:481–495Google Scholar
  37. 37.
    Fiechter A, Fuhrmann GF, Kappeli O (1981) Regulation of glucose metabolism in growing yeast cells. Adv Microb Physiol 22:123–183Google Scholar
  38. 38.
    Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525Google Scholar
  39. 39.
    Frazier AE, Kiu C, Stojanovski D et al (2006) Mitochondrial morphology and distribution in mammalian cells. Biol Chem 387:1551–1558Google Scholar
  40. 40.
    Glory E, Murphy RF (2007) Automated subcellular location determination and high-throughput microscopy. Dev Cell 12:7–16Google Scholar
  41. 41.
    Gorsich SW, Shaw JM (2004) Importance of mitochondrial dynamics during meiosis and sporulation. Mol Biol Cell 15:4369–4381Google Scholar
  42. 42.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629Google Scholar
  43. 43.
    Hackenbrock CR (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 30:269–297Google Scholar
  44. 44.
    Hamilton N (2009) Quantification and its applications in fluorescent microscopy imaging. Traffic 10:951–961Google Scholar
  45. 45.
    Held H (1893) Die centrale Gehorleitung. Arch f Anat u Physiol Anat Abt 201–248Google Scholar
  46. 46.
    Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355Google Scholar
  47. 47.
    Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158Google Scholar
  48. 48.
    Hell SW (2009a) Far-field optical nanoscopy. In: Single molecule spectroscopy in chemistry, physics and biology. Springer, BerlinGoogle Scholar
  49. 49.
    Hell SW (2009b) Microscopy and its focal switch. Nat Methods 6:24–32Google Scholar
  50. 50.
    Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14:599–609Google Scholar
  51. 51.
    Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A (Materials Science Processing) 77:859–860Google Scholar
  52. 52.
    Hell SW, Kroug M (1995) Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497Google Scholar
  53. 53.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt Lett 19:780–782Google Scholar
  54. 54.
    Herold J, Schubert W, Nattkemper TW (2010) Automated detection and quantification of fluorescently labeled synapses in murine brain tissue sections for high throughput applications. J Biotechnol. doi: 10.1016/j.jbiotec.2010.03.004
  55. 55.
    Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272Google Scholar
  56. 56.
    Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780Google Scholar
  57. 57.
    Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016Google Scholar
  58. 58.
    Huang HM, Fowler C, Zhang H et al (2004) Mitochondrial heterogeneity within and between different cell types. Neurochem Res 29:651–658Google Scholar
  59. 59.
    Huh WK, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691Google Scholar
  60. 60.
    Hutchins JR, Toyoda Y, Hegemann B et al (2010) Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328:593–599Google Scholar
  61. 61.
    Jacobson J, Duchen MR (2004) Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem 256–257:209–218Google Scholar
  62. 62.
    Jakobs S (2006) High resolution imaging of live mitochondria. Biochim Biophys Acta 1763:561–575Google Scholar
  63. 63.
    Jakobs S, Martini N, Schauss AC et al (2003) Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. J Cell Sci 116:2005–2014Google Scholar
  64. 64.
    Jourdain A, Martinou JC (2009) Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41:1884–1889Google Scholar
  65. 65.
    Jourdain I, Gachet Y, Hyams JS (2009) The dynamin related protein Dnm1 fragments mitochondria in a microtubule-dependent manner during the fission yeast cell cycle. Cell Motil Cytoskeleton 66:509–523Google Scholar
  66. 66.
    Kennedy EP, Lehninger AL (1949) Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J Biol Chem 179:957–972Google Scholar
  67. 67.
    Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210Google Scholar
  68. 68.
    Kölliker A (1857) Einige Bemerkungen über die Endigungen der Hautnerven und den Bau der Muskeln. Zeitschr f wissensch Zool 8:311–325Google Scholar
  69. 69.
    Koopman WJ, Visch HJ, Smeitink JA et al (2006) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A 69:1–12Google Scholar
  70. 70.
    Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304:433–435Google Scholar
  71. 71.
    Kuznetsov AV, Hermann M, Saks V et al (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41:1928–1939Google Scholar
  72. 72.
    Kwong JQ, Beal MF, Manfredi G (2006) The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 97:1659–1675Google Scholar
  73. 73.
    Lee YJ, Jeong SY, Karbowski M et al (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011Google Scholar
  74. 74.
    Lemasters JJ, Ramshesh VK (2007) Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods Cell Biol 80:283–295Google Scholar
  75. 75.
    Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845Google Scholar
  76. 76.
    Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831–838Google Scholar
  77. 77.
    Logan DC (2006) Plant mitochondrial dynamics. Biochim Biophys Acta 1763:430–441Google Scholar
  78. 78.
    Logan DC, Leaver CJ (2000) Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J Exp Bot 51:865–871Google Scholar
  79. 79.
    Lowe M, Barr FA (2007) Inheritance and biogenesis of organelles in the secretory pathway. Nat Rev Mol Cell Biol 8:429–439Google Scholar
  80. 80.
    Mackenzie S, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–586Google Scholar
  81. 81.
    Manders E, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Micros 169:375–382Google Scholar
  82. 82.
    Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542–548Google Scholar
  83. 83.
    Mannella CA, Pfeiffer DR, Bradshaw PC et al (2001) Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52:93–100Google Scholar
  84. 84.
    McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–560Google Scholar
  85. 85.
    Meisinger C, Sickmann A, Pfanner N (2008) The mitochondrial proteome: from inventory to function. Cell 134:22–24Google Scholar
  86. 86.
    Modica-Napolitano JS, Kulawiec M, Singh KK (2007) Mitochondria and human cancer. Curr Mol Med 7:121–131Google Scholar
  87. 87.
    Muzzey D, van Oudenaarden A (2009) Quantitative time-lapse fluorescence microscopy in single cells. Annu Rev Cell Dev Biol 25:301–327Google Scholar
  88. 88.
    Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–686Google Scholar
  89. 89.
    Negishi T, Nogami S, Ohya Y (2009) Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J Biotechnol 141:109–117Google Scholar
  90. 90.
    Neumann B, Walter T, Heriche JK et al (2010a) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–727Google Scholar
  91. 91.
    Neumann D, Bückers J, Kastrup L et al (2010b) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 3:4Google Scholar
  92. 92.
    Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174Google Scholar
  93. 93.
    Nishikawa T, Araki E (2007) Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 9:343–353Google Scholar
  94. 94.
    Nishino I, Kobayashi O, Goto Y et al (1998) A new congenital muscular dystrophy with mitochondrial structural abnormalities. Muscle Nerve 21:40–47Google Scholar
  95. 95.
    Nunnari J, Marshall WF, Straight A et al (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8:1233–1242Google Scholar
  96. 96.
    Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536Google Scholar
  97. 97.
    Park MK, Ashby MC, Erdemli G et al (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20:1863–1874Google Scholar
  98. 98.
    Parone PA, James DI, Da Cruz S et al (2006) Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 26:7397–7408Google Scholar
  99. 99.
    Patterson G, Davidson M, Manley S et al (2010) Superresolution Imaging using Single-Molecule Localization. Annu Rev Phys Chem 61:346–367Google Scholar
  100. 100.
    Peng T, Bonamy GM, Glory-Afshar E et al (2010) Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns. Proc Natl Acad Sci USA 107:2944–2949Google Scholar
  101. 101.
    Pepperkok R, Ellenberg J (2006) High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 7:690–696Google Scholar
  102. 102.
    Perkins GA, Tjong J, Brown JM et al (2010) The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J Neurosci 30:1015–1026Google Scholar
  103. 103.
    Premsler T, Zahedi RP, Lewandrowski U et al (2009) Recent advances in yeast organelle and membrane proteomics. Proteomics 9:4731–4743Google Scholar
  104. 104.
    Rasmusson AG, Geisler DA, Moller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60Google Scholar
  105. 105.
    Rebeille F, Alban C, Bourguignon J et al (2007) The role of plant mitochondria in the biosynthesis of coenzymes. Photosynth Res 92:149–162Google Scholar
  106. 106.
    Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218:286–292Google Scholar
  107. 107.
    Rittscher J (2010) Characterization of biological processes through automated image analysis. Annu Rev Biomed Eng 12:315–344Google Scholar
  108. 108.
    Rizzuto R, Pinton P, Carrington W et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766Google Scholar
  109. 109.
    Rossignol R, Gilkerson R, Aggeler R et al (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993Google Scholar
  110. 110.
    Rowland KC, Irby NK, Spirou GA (2000) Specialized synapse-associated structures within the calyx of Held. J Neurosci 20:9135–9144Google Scholar
  111. 111.
    Rust M, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795Google Scholar
  112. 112.
    Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493Google Scholar
  113. 113.
    Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477Google Scholar
  114. 114.
    Schauss AC, Bewersdorf J, Jakobs S (2006) Fis1p and Caf4p, but not Mdv1p, determine the polar localization of Dnm1p clusters on the mitochondrial surface. J Cell Sci 119:3098–3106Google Scholar
  115. 115.
    Scheffler IE (2001) Mitochondria make a come back. Adv Drug Deliv Rev 49:3–26Google Scholar
  116. 116.
    Scheffler IE (2008) Mitochondria. Wieley, New JerseyGoogle Scholar
  117. 117.
    Schmidt R, Wurm CA, Jakobs S et al (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5:539–544Google Scholar
  118. 118.
    Schmidt R, Wurm CA, Punge A et al (2009) Mitochondrial cristae revealed with focused light. Nano Lett 9:2508–2510Google Scholar
  119. 119.
    Schubert W, Bonnekoh B, Pommer AJ et al (2006) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24:1270–1278Google Scholar
  120. 120.
    Scorrano L, Ashiya M, Buttle K et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67Google Scholar
  121. 121.
    Shariff A, Kangas J, Coelho LP et al (2010) Automated image analysis for high-content screening and analysis. J Biomol Screen. doi: 10.1177/1087057110370894
  122. 122.
    Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755Google Scholar
  123. 123.
    Sheridan C, Delivani P, Cullen SP et al (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome c release. Mol Cell 31:570–585Google Scholar
  124. 124.
    Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675Google Scholar
  125. 125.
    Stevens B (1977) Variation in number and volume of the mitochondria in yeast according to growth conditions. A study based on serial sectioning and computer graphics reconstitution. Biol Cell 28:37–56Google Scholar
  126. 126.
    Sträuber H, Müller S (2010) Viability states of bacteria-specific mechanisms of selected probes. Cytometry A. doi: 10.1002/cyto.a.20920
  127. 127.
    Szabadkai G, Simoni AM, Bianchi K et al (2006) Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763:442–449Google Scholar
  128. 128.
    Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(2):R183–194Google Scholar
  129. 129.
    Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118Google Scholar
  130. 130.
    Warren G, Wickner W (1996) Organelle inheritance. Cell 84:395–400Google Scholar
  131. 131.
    Weber K, Ridderskamp D, Alfert M et al (2002) Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells. Biol Chem 383:283–290Google Scholar
  132. 132.
    Wikstrom JD, Katzman SM, Mohamed H et al (2007) beta-Cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels. Diabetes 56:2569–2578Google Scholar
  133. 133.
    Wikstrom JD, Twig G, Shirihai OS (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 41:1914–1927Google Scholar
  134. 134.
    Wurm CA, Jakobs S (2006) Differential protein distributions define two subcompartments of the mitochondrial inner membrane in yeast. FEBS Lett 580:5628–5634Google Scholar
  135. 135.
    Yamaguchi R, Lartigue L, Perkins G et al (2008) Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 31:557–569Google Scholar
  136. 136.
    Yamaguchi R, Perkins G (2009) Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1. Biochim Biophys Acta 1787:963–972Google Scholar
  137. 137.
    Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663Google Scholar
  138. 138.
    Zellnig G, Zechmann B, Perktold A (2004) Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves. Protoplasma 223:221–227Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Mitochondrial Structure and Dynamics GroupMax Planck Institute for Biophysical ChemistryGoettingenGermany

Personalised recommendations