Bacteriophage-Based Pathogen Detection

Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 118)


Considered the most abundant organism on Earth, at a population approaching 1031, bacteriophage, or phage for short, mediate interactions with myriad bacterial hosts that has for decades been exploited in phage typing schemes for signature identification of clinical, food-borne, and water-borne pathogens. With over 5,000 phage being morphologically characterized and grouped as to susceptible host, there exists an enormous cache of bacterial-specific sensors that has more recently been incorporated into novel bio-recognition assays with heightened sensitivity, specificity, and speed. These assays take many forms, ranging from straightforward visualization of labeled phage as they attach to their specific bacterial hosts to reporter phage that genetically deposit trackable signals within their bacterial hosts to the detection of progeny phage or other uniquely identifiable elements released from infected host cells. A comprehensive review of these and other phage-based detection assays, as directed towards the detection and monitoring of bacterial pathogens, will be provided in this chapter.


Bacteriophage Pathogen Phage Phage amplification Phage display Reporter gene 


  1. 1.
    Funatsu T, Taniyama T, Tajima T et al (2002) Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol Immunol 46:365–369Google Scholar
  2. 2.
    Tanji Y, Furukawa C, Na SH et al (2004) Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J Biotechnol 114:11–20CrossRefGoogle Scholar
  3. 3.
    Miyanaga K, Hijikata TF, Furukawa C et al (2006) Detection of Escherichia coli in the sewage influent by fluorescent labeled T4 phage. Biochem Eng J 29:119–124CrossRefGoogle Scholar
  4. 4.
    Namura M, Hijikata T, Miyanaga K et al (2008) Detection of Escherichia coli with fluorescent labeled phages that have a broad host range to E.coli in sewage water. Biotechnol Prog 24:481–486CrossRefGoogle Scholar
  5. 5.
    Oda M, Morita M, Unno H et al (2004) Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl Environ Microbiol 70:527–534CrossRefGoogle Scholar
  6. 6.
    Awais R, Fukudomi H, Miyanaga K et al (2006) A recombinant bacteriophage-based assay for the discriminative detection of culturable and viable but nonculturable Escherichia coli O157:H7. Biotechnol Prog 22:853–859CrossRefGoogle Scholar
  7. 7.
    Meighen EA (1994) Genetics of bacterial bioluminescence. Annu Rev Genet 28:117–139CrossRefGoogle Scholar
  8. 8.
    Ulitzur S, Kuhn J (1987) Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotic susceptibility. In: Scholmerich J, Andreesen R, Kapp A, Ernst M, Woods WG (eds) Bioluminescence and chemiluminescence: new perspectives. Wiley, New YorkGoogle Scholar
  9. 9.
    Kodikara CP, Crew HH, Stewart GSAB (1991) Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol Lett 83:261–266CrossRefGoogle Scholar
  10. 10.
    Waddell TE, Poppe C (2000) Construction of mini-Tn10luxABcam/Ptac-ATS and its use for developing a bacteriophage that transduces bioluminescence to Escherichia coli O157:H7. FEMS Microbiol Lett 182:285–289CrossRefGoogle Scholar
  11. 11.
    Chen J, Griffiths MW (1996) Salmonella detection in eggs using lux+ bacteriophages. J Food Prot 59:908–914Google Scholar
  12. 12.
    Thouand G, Vachon P, Liu S et al (2008) Optimization and validation of a simple method using P22::luxAB bacteriophage for rapid detection of Salmonella enterica serotypes A, B, and D in poultry samples. J Food Prot 71:380–385Google Scholar
  13. 13.
    Loessner MJ, Rudolf M, Scherer S (1997) Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods. Appl Environ Microbiol 63:2961–2965Google Scholar
  14. 14.
    Ripp S, Jegier P, Birmele M et al (2006) Linking bacteriophage infection to quorum sensing signalling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J Appl Microbiol 100:488–499CrossRefGoogle Scholar
  15. 15.
    Harms H, Wells MC, van der Meer JR (2006) Whole-cell living biosensors - are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280CrossRefGoogle Scholar
  16. 16.
    Ripp S, Jegier P, Johnson CM et al (2008) Bacteriophage-amplified bioluminescent sensing of Escherichia coli O157:H7. Anal Bioanal Chem 391:507–514CrossRefGoogle Scholar
  17. 17.
    Carriere C, Riska PF, Zimhony O et al (1997) Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J Clin Microbiol 35:3232–3239Google Scholar
  18. 18.
    Sarkis GJ, Jacobs WR, Hatfull GF (1995) L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055–1067CrossRefGoogle Scholar
  19. 19.
    Bardarov S, Dou H, Eisenach K et al (2003) Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: comparison with the mycobacteria growth indicator tube (MGIT) system. Diagn Microbiol Infect Dis 45:53–61CrossRefGoogle Scholar
  20. 20.
    Riska PF, Su Y, Bardarov S et al (1999) Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx box. J Clin Microbiol 37:1144–1149Google Scholar
  21. 21.
    Hazbon MH, Guarin N, Ferro BE et al (2003) Photographic and luminometric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 41:4865–4869CrossRefGoogle Scholar
  22. 22.
    Goodridge L, Griffiths MW (2002) Reporter bacteriophage assays as a means to detect foodborne pathogenic bacteria. Food Res Int 35:863–870CrossRefGoogle Scholar
  23. 23.
    Wolber PK, Green RL (1990) Detection of bacteria by transduction of ice nucleation genes. Trends Biotechnol 8:276–279CrossRefGoogle Scholar
  24. 24.
    Goodridge L, Chen J, Griffiths MW (1999) Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7. Appl Environ Microbiol 65:1397–1404Google Scholar
  25. 25.
    Goodridge L, Chen J, Griffiths MW (1999) The use of fluorescent bacteriophage assay for detection of Escherichia coli O157:H7 in inoculated ground beef and raw milk. Int J Food Microbiol 47:43–50CrossRefGoogle Scholar
  26. 26.
    Kenzaka T, Utrarachkij F, Suthienkul O et al (2006) Rapid monitoring of Escherichia coli in southeast Asian urban canals by fluorescent-bacteriophage assay. J Health Sci 52:666–671CrossRefGoogle Scholar
  27. 27.
    Mosier-Boss PA, Lieberman SH, Andrews JM et al (2003) Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl Spectrosc 57:1138–1144CrossRefGoogle Scholar
  28. 28.
    Crane DD, Martin LD, Hirsh DC (1984) Detection of Salmonella in feces by using Felix-01 bacteriophage and high-performance liquid-chromatography. J Microbiol Methods 2:251–256CrossRefGoogle Scholar
  29. 29.
    Hirsh DC, Martin LD (1983) Detection of Salmonella spp in milk by using Felix-01 bacteriophage high-pressure liquid-chromatography. Appl Environ Microbiol 46:1243–1245Google Scholar
  30. 30.
    Stewart GSAB, Jassim SAA, Denyer SP et al (1998) The specific and sensitive detection of bacterial pathogens with 4 h using bacteriophage amplification. J Appl Microbiol 84:777–783CrossRefGoogle Scholar
  31. 31.
    Mole RJ, Maskell WOC (2001) Phage as a diagnostic – the use of phage in TB diagnosis. J Chem Technol Biotechnol 76:683–688CrossRefGoogle Scholar
  32. 32.
    Pai M, Kalantri S, Pascopella L et al (2005) Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. J Infect 51:175–187CrossRefGoogle Scholar
  33. 33.
    Favrin SJ, Jassim SA, Griffiths MW (2001) Development and optimization of a novel immunomagnetic separation-bacteriophage assay for detection of Salmonella enterica serovar enteritidis in broth. Appl Environ Microbiol 67:217–224CrossRefGoogle Scholar
  34. 34.
    Favrin SJ, Jassim SA, Griffiths MW (2003) Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157: H7 in food. Int J Food Microbiol 85:63–71CrossRefGoogle Scholar
  35. 35.
    Jassim SAA, Griffiths MW (2007) Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with live/dead fluorochromic stains. Lett Appl Microbiol 44:673–678CrossRefGoogle Scholar
  36. 36.
    Ulitzur N, Ulitzur S (2006) New rapid and simple methods for detection of bacteria and determination of their antibiotic susceptibility by using phage mutants. Appl Environ Microbiol 72:7455–7459CrossRefGoogle Scholar
  37. 37.
    Madonna AJ, Van Cuyk S, Voorhees KJ (2003) Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rap Commun Mass Spectrom 17:257–263CrossRefGoogle Scholar
  38. 38.
    Guan JW, Chan M, Allain B et al (2006) Detection of multiple antibiotic-resistant Salmonella enterica serovar Typhimurium DT104 by phage replication-competitive enzyme-linked immunosorbent assay. J Food Prot 69:739–742Google Scholar
  39. 39.
    Petrenko VA, Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J Microbiol Methods 53:253–262CrossRefGoogle Scholar
  40. 40.
    Lakshmanan RS, Guntupalli R, Hu J et al (2007) Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sens Actuator B Chem 126:544–550CrossRefGoogle Scholar
  41. 41.
    Wan JH, Johnson ML, Guntupalli R et al (2007) Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sens Actuator B Chem 127:559–566CrossRefGoogle Scholar
  42. 42.
    Edgar R, McKinstry M, Hwang J et al (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci U S A 103:4841–4845CrossRefGoogle Scholar
  43. 43.
    Dobozi-King M, Seo S, Kim JU et al (2005) Rapid detection and identification of bacteria: sensing of phage-triggered ion cascade (SEPTIC). J Biol Phys Chem 5:3–7CrossRefGoogle Scholar
  44. 44.
    Seo S, Dobozi-King M, Young RF et al (2008) Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectron Eng 85:1484–1489CrossRefGoogle Scholar
  45. 45.
    Neufeld T, Schwartz-Mittelmann A, Biran D et al (2003) Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. Anal Chem 75:580–585CrossRefGoogle Scholar
  46. 46.
    Yemini M, Levi Y, Yagil E et al (2007) Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis. Bioelectrochemistry 70:180–184CrossRefGoogle Scholar
  47. 47.
    Neufeld T, Mittelman AS, Buchner V et al (2005) Electrochemical phagemid assay for the specific detection of bacteria using Escherichia coli TG-1 and the M13KO7 phagemid in a model system. Anal Chem 77:652–657CrossRefGoogle Scholar
  48. 48.
    Chang TC, Ding HC, Chen SW (2002) A conductance method for the identification of Escherichia coli O157:H7 using bacteriophage AR1. J Food Prot 65:12–17Google Scholar
  49. 49.
    Balasubramanian S, Sorokulova IB, Vodyanoy VJ et al (2007) Lytic phage as a specific and selective probe for detection of Staphylococcus aureus – a surface plasmon resonance spectroscopic study. Biosens Bioelectron 22:948–955CrossRefGoogle Scholar
  50. 50.
    Blasco R, Murphy MJ, Sanders MF et al (1998) Specific assays for bacteria using phage mediated release of adenylate kinase. J Appl Microbiol 84:661–666CrossRefGoogle Scholar
  51. 51.
    Wu Y, Brovko L, Griffiths MW (2001) Influence of phage population on the phage-mediated bioluminescent adenylate kinase (AK) assay for detection of bacteria. Lett Appl Microbiol 33:311–315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.The University of TennesseeKnoxvilleUSA

Personalised recommendations