Engineering the Escherichia coli Fermentative Metabolism

  • M. Orencio-Trejo
  • J. Utrilla
  • M. T. Fernández-Sandoval
  • G. Huerta-Beristain
  • G. Gosset
  • A. Martinez
Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 121)


Fermentative metabolism constitutes a fundamental cellular capacity for industrial biocatalysis. Escherichia coli is an important microorganism in the field of metabolic engineering for its well-known molecular characteristics and its rapid growth. It can adapt to different growth conditions and is able to grow in the presence or absence of oxygen. Through the use of metabolic pathway engineering and bioprocessing techniques, it is possible to explore the fundamental cellular properties and to exploit its capacity to be applied as industrial biocatalysts to produce a wide array of chemicals. The objective of this chapter is to review the metabolic engineering efforts carried out with E. coli by manipulating the central carbon metabolism and fermentative pathways to obtain strains that produce metabolites with high titers, such as ethanol, alanine, lactate and succinate.


Alanine Central carbon metabolism Escherichia coli Ethanol Fermentative metabolism Glucose Lactate Metabolic engineering Succinate Xylose 



Support from grants UNAM-PAPIIT-DGAPA: IN220908 and CONACyT′ – Estado de Morelos MOR-2007-COL-80360 is acknowledged.


  1. 1.
    Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187:3171–3179CrossRefGoogle Scholar
  2. 2.
    Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590CrossRefGoogle Scholar
  3. 3.
    Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York, p 237CrossRefGoogle Scholar
  4. 4.
    Sakar D, Shimizu K (2008) Effect of cra gene knockout together with other genes knockouts on the improvement of substrate consumption rate in Escherichia coli under microaerobic condition. Biochem Eng J 42:224–228CrossRefGoogle Scholar
  5. 5.
    Lin ECC, Iuchi S (1991) Regulation of gene expression in fermentative and respiratory systems is Escherichia coli and related bacteria. Annu Rev Genet 25:361–387CrossRefGoogle Scholar
  6. 6.
    Chatterjee R, Millard CS, Champion K et al (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154CrossRefGoogle Scholar
  7. 7.
    Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234CrossRefGoogle Scholar
  8. 8.
    Böck A, Sawers G (1996) Fermentation. In: Neidhart FC (ed) Escherichia coli and Salmonella. Cellular and molecular biology, 2nd edn. ASM, Washington DC, USAGoogle Scholar
  9. 9.
    Sawers G, Bock A (1988) Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J Bacteriol 170:5330–5336Google Scholar
  10. 10.
    Postma PW, Lengeler JW, Jacobson GR (1996) Phosphoenolpyruvate: carbohydrate phosphotransferase systems. In: Neidhart FC (ed) Escherichia coli and Salmonella. Cellular and molecular biology, 2nd edn. ASM, Washington DC, USAGoogle Scholar
  11. 11.
    Saier MH (2000) Vectorial metabolism and the evolution of transport systems. J Bacteriol 182:5029–5035CrossRefGoogle Scholar
  12. 12.
    Tchieu JH, Norris V, Edwards JS et al (2001) The complete phosphotranferase system in Escherichia coli. J Mol Microbiol Biotechnol 3:329–346Google Scholar
  13. 13.
    Misset O, Blaauw M, Postma PW et al (1983) Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanism of the transmembrane sugar translocation and phosphorylation. Biochemistry 22:6163–6170CrossRefGoogle Scholar
  14. 14.
    Stock JB, Waygood EB, Meadow ND et al (1982) Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem 257:14543–14552Google Scholar
  15. 15.
    Holms WH (1986) The central metabolic pathway of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. In: Horecker BL, Stadtman ER (eds) Current topics in cell regulation. Academic, New YorkGoogle Scholar
  16. 16.
    Flores N, Flores S, Escalante A et al (2005) Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Metab Eng 7:70–87CrossRefGoogle Scholar
  17. 17.
    Flores N, Yong-Xiao J, Berry A et al (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623CrossRefGoogle Scholar
  18. 18.
    Flores S, Gosset G, Flores N et al (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by 13C labeling and NMR spectroscopy. Metab Eng 4:124–137CrossRefGoogle Scholar
  19. 19.
    Hernández-Montalvo V, Martinez A, Hernández-Chávez G et al (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694CrossRefGoogle Scholar
  20. 20.
    Lin H, Bennett GN, San KY (2005) Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 32:87–93CrossRefGoogle Scholar
  21. 21.
    Lin H, San KY, Bennett GN (2005) Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Appl Microbiol Biotechnol 67:515–523CrossRefGoogle Scholar
  22. 22.
    Martinez A, York SW, Yomano LP et al (1999) Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli. Biotechnol Prog 15:891–897CrossRefGoogle Scholar
  23. 23.
    Gunsalus R (1992) Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol 174:7069–7074Google Scholar
  24. 24.
    Shalel-Levanon S, San KY, Bennet GN (2005) Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol Bioeng 92:147–159CrossRefGoogle Scholar
  25. 25.
    Guest JR, Green J, Irvine AS et al (1996) The FNR modulon and FNR-regulated gene expression. In: Lin ECC, Lynch AS (eds) Regulation of gene expression in Escherichia coli. Chapman & Hall, New YorkGoogle Scholar
  26. 26.
    Lynch AS, Lin ECC (1996) Regulation of aerobic and anaerobic metabolism by the Arc system. In: Lin ECC, Lynch AS (eds) Regulation of gene expression in Escherichia coli. Chapman & Hall, New YorkGoogle Scholar
  27. 27.
    Park SJ, Gunsalus RP (1995) Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: Role or arcA, fnr and soxR gene products. J Bacteriol 177:6255–6262Google Scholar
  28. 28.
    Gutierrez-Ríos RM, Freyre-Gonzalez JA, Resendis O et al (2007) Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiol 7:53CrossRefGoogle Scholar
  29. 29.
    Báez-Viveros J, Flores N, Juárez K et al (2007) Metabolic transcription analysis of engineered Escherichia coli strains that overproduce l-phenylalanine. Microbial Cell Fact 6:30CrossRefGoogle Scholar
  30. 30.
    Franchini AG, Egli T (2006) Global gene expression in Escherichia coli K-12 during short-term and long term adaptation to glucose-limited continuous culture conditions. Microbiology 152:2111–2127CrossRefGoogle Scholar
  31. 31.
    Gonzalez R, Tao H, Shanmugam KT et al (2002) Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol Prog 18:6–20CrossRefGoogle Scholar
  32. 32.
    Orencio-Trejo M, Flores N, Escalante A et al (2008) Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities. Biotech Biofuels 1:8CrossRefGoogle Scholar
  33. 33.
    Zhu J, Shimizu K (2005) Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for d-lactate production under microaerobic condition. Metab Eng 7:104–115CrossRefGoogle Scholar
  34. 34.
    Saier MH (1996) Cyclic AMP-independent catabolite repression in bacteria. FEMS Microbiol Lett 138:97–103CrossRefGoogle Scholar
  35. 35.
    Ow DSW, Lee RMY, Nisson PM et al (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J Biotechnol 131:261–269CrossRefGoogle Scholar
  36. 36.
    Saier MH, Ramseier T (1996) The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol 178:3411–3417Google Scholar
  37. 37.
    Crasnier-Mednansky M, Park MC, Studley WK et al (1997) Cra-mediated regulation of Escherichia coli adenylate cyclase. Microbiology 143:785–792CrossRefGoogle Scholar
  38. 38.
    Chin AM, Feldheim DA, Saier MH (1989) Altered transcription patterns affecting several metabolic pathways is strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol 171:2424–2434Google Scholar
  39. 39.
    Ramseier TM, Bleding S, Michotey V et al (1995) The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol Microbiol 16:1157–1169CrossRefGoogle Scholar
  40. 40.
    Saier MH, Ramseier TM, Reizer J (1996) Regulation of carbon utilization. In: Neidhart FC (ed) Escherichia coli and Salmonella. Cellular and molecular biology, 2nd edn. ASM, Washington DC, USAGoogle Scholar
  41. 41.
    Arora KK, Pedersen PL (1995) Glucokinase of Escherichia coli: induction in response to the stress of overexpressing foreign proteins. Arch Biochem Biophys 319:574–578CrossRefGoogle Scholar
  42. 42.
    Charpentier B, Branlant C (1994) The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme Eσ70 and the heat shock RNA polymerase Eσ32. J Bacteriol 176:830–839Google Scholar
  43. 43.
    Fenton AW, Reinhart GD (2002) Isolation of a single activating allostering interaction in phosphofructokinase from Escherichia coli. Biochemistry 41:13410–13416CrossRefGoogle Scholar
  44. 44.
    Blangly H, Buc H, Monod J (1968) Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol 31:13–35CrossRefGoogle Scholar
  45. 45.
    Fenton AW, Paricharttanakul NM (2003) Identification of substrate contact residues important for the allosteric regulation of phosphofructokinase from Escherichia coli. Biochemistry 42:6453–6459CrossRefGoogle Scholar
  46. 46.
    Fraenkel DG (1996) Glycolysis. In: Neidhart FC (ed) Escherichia coli and Salmonella. Cellular and molecular biology, 2nd edn. ASM, Washington DC, USAGoogle Scholar
  47. 47.
    Ponce E, Flores N, Martinez A et al (1995) Cloning of the two pyruvate kinase isoenzymes structural genes from Escherichia coli: the relative roles of these enzymes in pyruvate biosynthesis. J Bacteriol 177:5719–5722Google Scholar
  48. 48.
    Peng MJ, Arauzo-Bravo SK (2004) Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements. FEMS Microbiol Lett 235:17–23CrossRefGoogle Scholar
  49. 49.
    Yang C, Hua Q, Baba T et al (2003) Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanism from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng 84:129–144CrossRefGoogle Scholar
  50. 50.
    Ogawa T, Mori H, Tomita MY et al (2007) Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli. Res Microbiol 158:159–163CrossRefGoogle Scholar
  51. 51.
    De Graef MR, Alexeeva S, Snoep JL et al (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357Google Scholar
  52. 52.
    Garrigues C, Loubiere P, Lindley ND et al (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287Google Scholar
  53. 53.
    Koebmann BJ, Westerhoff HV, Snoep JL et al (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909–3916CrossRefGoogle Scholar
  54. 54.
    Vemuri GN, Eiteman MA, Altman E (2005) Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng 94:538–542CrossRefGoogle Scholar
  55. 55.
    Wang Y, Wu SL, Hancock WS et al (2005) Proteomic profiling of Escherichia coli proteins under high cell density fed-batch cultivation with overexpression of phosphogluconolactonase. Biotechnol Prog 21:1401–1411CrossRefGoogle Scholar
  56. 56.
    Fraenkel DG, Vinopal RT (1973) Carbohydrate metabolism in bacteria. Annu Rev Microbiol 27:69–100CrossRefGoogle Scholar
  57. 57.
    Sprenger GA (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324–330CrossRefGoogle Scholar
  58. 58.
    Zhang R, Andersson CE, Savchenko A et al (2003) Structure of Escherichia coli ribose-5-phosphate isomerase: a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle. Structure 11:31–42CrossRefGoogle Scholar
  59. 59.
    Fraenkel DG (1987) Glycolysis, pentose phosphate pathway, and Entner-Doudoroff pathway. In: Neidhart FC (ed) Escherichia coli and Salmonella. Cellular and molecular biology. ASM, Washington DC, USAGoogle Scholar
  60. 60.
    Lin ECC (1996) Dissimilatory pathways for sugar, poliols and carboxylates. In: Neidhart FC (ed) Escherichia coli and Salmonella. Cellular and molecular biology, 2nd edn. ASM, Washington DC, USAGoogle Scholar
  61. 61.
    Macpherson AJS, Jones-Mortimer MC, Henderson PJF (1981) Identification of area transport protein of Escherichia coli. Biochem J 196:269–283Google Scholar
  62. 62.
    Scripture JB, Hogg RW (1983) The nucleotides sequences defining the signal peptides of the galactose-binding protein and the arabinose-binding protein. J Mol Biol 258:10853–10855Google Scholar
  63. 63.
    Kosiba BE, Schleif R (1982) Arabinose-inducible from Escherichia coli: its cloning from chromosomal DNA, identification as the araFG promoter and sequence. J Mol Biol 156:53–66CrossRefGoogle Scholar
  64. 64.
    Kolodrubetz D, Schleif R (1981) Regulation of the l-arabinose transport operons in Escherichia coli. J Mol Biol 151:215–227CrossRefGoogle Scholar
  65. 65.
    Ogden S, Haggerty D, Stoner CM et al (1980) The Escherichia coli l-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. PNAS 77:3346–3350CrossRefGoogle Scholar
  66. 66.
    Ratushny AV, Smirnova OG, Usuda Y et al. (2006) Regulation of the pentose phosphate pathway in Escherichia coli: gene network reconstruction and mathematical modeling of metabolic reaction. The fourth international conferences of bioinformatics of genome and structure 2006Google Scholar
  67. 67.
    Bausch C, Peekhaus N, Utz C et al (1998) Sequence analysis of the GntII system for gluconate metabolism reveals a novel pathway for l-idonic acid catabolism in Escherichia coli. J Bacteriol 180:3704–3710Google Scholar
  68. 68.
    Fuhrman LK, Wanken A, Nickerson KW et al (1998) Rapid accumulation of intracellular 2-keto-3-deoxy-6-phosphogluconate in an Entner-Doudoroff aldolase mutant results in bacteriostasis. FEMS Microbiol Lett 159:261–266CrossRefGoogle Scholar
  69. 69.
    Porco A, Alonso G, Istúriz T (1998) The gluconate high affinity transport of GntI in Escherichia coli involves a multicomponent complex system. J Basic Microbiol 38:395–404CrossRefGoogle Scholar
  70. 70.
    Tong S, Porco A, Istüriz T, Conway T (1996) Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK and gntU genes of GntI, the main system for gluconate metabolism. J Bacteriol 178:3260–3269Google Scholar
  71. 71.
    Bachi B, Kornberg HL (1975) Genes involved in the uptake and catabolism of gluconate by Escherichia coli. J Gen Microbiol 90:321–335Google Scholar
  72. 72.
    Istúriz T, Palmero E, Vitelli-Flores J (1986) Mutations affecting gluconate catabolism in Escherichia coli. Genetic mapping of the locus for the thermosensitive gluconokinase. J Gen Microbiol 132:3209–3219Google Scholar
  73. 73.
    Peekhaus N, Conway T (1998) What’s for dinner? Entner-Duodoroff metabolism. J Bacteriol 180:3495–3502Google Scholar
  74. 74.
    O’Neill MC (1989) Escherichia coli promoters I. Consensus as it relates to spacing class, specificity, repeat substructure, and three-dimensional organization. J Biol Chem 264:5531–5534Google Scholar
  75. 75.
    Kim YK, Ingram LO, Shanmugam KT (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol 73:1766–1771CrossRefGoogle Scholar
  76. 76.
    Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRefGoogle Scholar
  77. 77.
    Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRefGoogle Scholar
  78. 78.
    Zaldivar J, Martínez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33CrossRefGoogle Scholar
  79. 79.
    Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948Google Scholar
  80. 80.
    Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404Google Scholar
  81. 81.
    Neale AD, Scopes RK, Kelly JM (1988) Alcohol production from glucose and xylose using Escherichia coli containing Zymomonas mobilis genes. Appl Microbiol Biotechnol 29:162–167Google Scholar
  82. 82.
    Jarboe LR, Grabar TB, Yomano LP et al (2007) Development of ethanologenic bacteria. Adv Biochem Eng/Biotechnol 108:237–261CrossRefGoogle Scholar
  83. 83.
    Ohta K, Beall DS, Mejia JP et al (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900Google Scholar
  84. 84.
    Sawers G, Bock A (1989) Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 171:2485–2498Google Scholar
  85. 85.
    Leite AR, Guimaraes WV, Fernandes de Araújo E et al (2000) Fermentation of sweet whey by recombinant Escherichia coli KO11. Brazilian J Microbiol 31:212–215CrossRefGoogle Scholar
  86. 86.
    Dien BS, Hespell RB, Ingram LO et al (1997) Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains KO11 and SL40. World J Microbiol Biotech 13:619–625CrossRefGoogle Scholar
  87. 87.
    Takahashi CM, de Carvalho Lima KG, Takahashi DF et al (2000) Fermentation of sugar cane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 16:829–834CrossRefGoogle Scholar
  88. 88.
    Barbosa MF, Beck MJ, Fein JE, Potts D et al (1992) Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Appl Environ Microbiol 58:1382–1384Google Scholar
  89. 89.
    Asghari A, Bothast RJ, Doran JB et al (1996) Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J Ind Microbiol 16:42–47CrossRefGoogle Scholar
  90. 90.
    Doran Peterson J, Ingram LO (2008) Anaerobic respiration in engineered Escherichia coli with an internal electron acceptor to produce fuel ethanol. Ann NY Acad Sci 1125:363–372CrossRefGoogle Scholar
  91. 91.
    Dien BS, Hespell RB, Wyckoff H et al (1998) Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain 1. Enz Microbial Technol 23:366–371CrossRefGoogle Scholar
  92. 92.
    Dien BS, Iten LB, Bothast RJ (1999) Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3. J Ind Microbiol Biotechnol 22:575–581CrossRefGoogle Scholar
  93. 93.
    Dien BS, Nichols NN, O’bryan PJ et al (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196CrossRefGoogle Scholar
  94. 94.
    Huerta-Beristain G, Utrilla J, Hernández-Chavez G et al (2008) Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 15:55–64CrossRefGoogle Scholar
  95. 95.
    Yomano LP, York SW, Zhou S et al (2008) Re-engineering Escherichia coli for ethanol production. Biotech Lett 30:2097–2103CrossRefGoogle Scholar
  96. 96.
    Martínez A, Grabar TB, Shanmugam KT et al (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404CrossRefGoogle Scholar
  97. 97.
    Zhou S, Iverson AG, Grayburn WS (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30:335–342CrossRefGoogle Scholar
  98. 98.
    Bayrock DP, Ingledew WM (2005) Ethanol production in multistage continuous, single stage continuous, Lactobacillus-contaminated continuous, and batch fermentations. World J Microbiol Biotechnol 21:83–88CrossRefGoogle Scholar
  99. 99.
    Lawford HG, Rousseau JD (1995) Loss of ethanologenicity in Escherichia coli B recombinants pLOI297 and KO11 during growth in the absence of antibiotics. Biotech Lett 17:751–756CrossRefGoogle Scholar
  100. 100.
    Dumsday GJ, Zhou B, Yaquin W et al (1999) Comparative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture. J Ind Microbiol Biotech 23:701–708CrossRefGoogle Scholar
  101. 101.
    Lawford HG, Rousseau JD (1996) Factors contributing to the loss of ethanologenicity of Escherichia coli B recombinants pLOI297 and KO11. Appl Biochem Biotechnol 57(58):293–305CrossRefGoogle Scholar
  102. 102.
    Martin GJO, Knepper A, Zhou B et al (2006) Performance and stability of ethanologenic Escherichia coli strain FBR5 during continuous culture on xylose and glucose. J Ind Microbiol Biotechnol 33:834–844CrossRefGoogle Scholar
  103. 103.
    Ingram LO, Buttke T (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253–300CrossRefGoogle Scholar
  104. 104.
    Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotech 20:132–138CrossRefGoogle Scholar
  105. 105.
    Dombek KM, Ingram LO (1984) Effects of ethanol on the Escherichia coli plasma membrane. J Bacteriol 157:233–239Google Scholar
  106. 106.
    Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotech 56:17–34CrossRefGoogle Scholar
  107. 107.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRefGoogle Scholar
  108. 108.
    Zaldivar J, Martínez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530CrossRefGoogle Scholar
  109. 109.
    Peterson JD, Ingram LO (2008) Anaerobic respiration in engineered Escherichia coli with an internal electron acceptor to produce fuel ethanol. Ann NY Acad Sci 1125:363–372CrossRefGoogle Scholar
  110. 110.
    Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210CrossRefGoogle Scholar
  111. 111.
    Katsumata R, Hashimoto S (1996) Process for producing alanine. US Patent 5559016Google Scholar
  112. 112.
    Zhang X, Jantama K, Moore JC et al (2007) Production of l-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotech 77:355–366CrossRefGoogle Scholar
  113. 113.
    Shibatani T, Kakimoto T, Chibata I (1979) Stimulation of l-aspartate β-decarboxylase formation by l-glutamate in Pseudomonas dacunhae and improved production of l-alanine. Appl Environ Microbiol 38:359–364Google Scholar
  114. 114.
    Hashimoto S, Katsumata R (1999) Mechanism of alanine hyperproduction by Arthrobacter oxydans HAP-1: metabolic shift to fermentation under nongrowth aerobic conditions. Appl Environ Microbiol 65:2781–2783Google Scholar
  115. 115.
    Uhlenbusch I, Hermann S, Sprenger GA (1991) Expression of an l-alanine dehydrogenase gene in Zymomonas mobilis and excretion of l-alanine. Appl Environ Microbiol 57:1360–1366Google Scholar
  116. 116.
    Reitzer LJ (1996) Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine and d-alanine. In: Neidhart FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM, Washington DC, USAGoogle Scholar
  117. 117.
    Kambampati R, Lauhon CT (2000) Evidence for the transfer of sulfane sulfur from IscC to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J Biol Chem 275:10727–10730CrossRefGoogle Scholar
  118. 118.
    Wang M, Buckley L, Berg CM (1987) Cloning of genes that suppress an Escherichia coli K-12 alanine auxotroph when present in multicopy plasmids. J Bacteriol 169:5610–5614Google Scholar
  119. 119.
    Wild J, Hennig J, Lobocka M et al (1985) Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K-12. Mol Gen Genetics 198:315–322CrossRefGoogle Scholar
  120. 120.
    Lee M, Smith GM, Eiteman MA et al (2004) Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene. Appl Microbiol Biotechnol 65:56–60Google Scholar
  121. 121.
    Smith GM, Lee SA, Reilly KC et al (2006) Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli. Biotech Lett 28:1695–1700CrossRefGoogle Scholar
  122. 122.
    Wada M, Narita K, Yokota A (2007) Alanine production in an H+-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase. Appl Microbiol Biotechnol 76:819–825CrossRefGoogle Scholar
  123. 123.
    Causey TB, Shanmugam KT, Yomano LP et al (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. PNAS 101:2235–2240CrossRefGoogle Scholar
  124. 124.
    Narayanan N, Roychoudhury PK, Srivastava A (2004) L(+) Lactic acid fermentation and its product polymerization. Elec J Biotechnol 7:167–179Google Scholar
  125. 125.
    Gupta S, Clark DP (1989) Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation. J Bacteriol 171:3650–3655Google Scholar
  126. 126.
    Zhou S, Causey TB, Hasona A et al (2003) Production of optically pure d-lactic acid in mineral salt medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407CrossRefGoogle Scholar
  127. 127.
    Zhu J, Zhimizu K (2004) The effect of pfl gene knockout on the metabolism for optically pure d-lactate production by Escherichia coli. App Microbiol Biotechnol 64:367–375CrossRefGoogle Scholar
  128. 128.
    Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of l-lactic acid from hexose and pentose sugars. J Ind Microbiol Biotechnol 27:259–264CrossRefGoogle Scholar
  129. 129.
    Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of l-lactic acid. J Ind Microbiol Biotechnol 29:221–227CrossRefGoogle Scholar
  130. 130.
    Zhou S, Shanmugam KT, Ingram LO (2003) Functional replacement of the Escherichia coli d-(–)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl Environ Microbiol 69:2237–2244CrossRefGoogle Scholar
  131. 131.
    Utrilla J, Gosset G, Martinez A (2009) ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to d-lactate. J Ind Microbiol Biotechnol 36:1057–1062CrossRefGoogle Scholar
  132. 132.
    Hasona A, Kim Y, Healy FG et al (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 22:7593–7600CrossRefGoogle Scholar
  133. 133.
    Zhou S, Yomano LP, Shanmugam KT et al (2005) Fermentation of 10% (w/v) sugar to D(–)-lactate by engineered Escherichia coli. Biotechnol Lett 27:1891–1896CrossRefGoogle Scholar
  134. 134.
    Zhou S, Grabar TB, Shanmugan KT et al (2006) Betaine tripled the volumetric productivity of d-(–)-lactate by Escherichia coli strain SZ132 in mineral salts medium. Biotechnol Lett 28:671–676CrossRefGoogle Scholar
  135. 135.
    Zhou S, Shanmugam KT, Yomano LP et al (2006) Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett 28:663–670CrossRefGoogle Scholar
  136. 136.
    Grabar TB, Zhou S, Shanmugam KT et al (2006) Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(–) lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535CrossRefGoogle Scholar
  137. 137.
    Fong FS, Burgard AP, Herring CD et al (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91:643–648CrossRefGoogle Scholar
  138. 138.
    Burgard AP, Pharkya P et al (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657CrossRefGoogle Scholar
  139. 139.
    Chang DE, Jung HC, Rhee JS et al (1999) Homofermentative production of D(–) or L(+) lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389Google Scholar
  140. 140.
    Zhu Y, Eiteman MA, DeWitt K et al (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73:456–464CrossRefGoogle Scholar
  141. 141.
    Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63:2695–2701Google Scholar
  142. 142.
    Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68:1715–1727CrossRefGoogle Scholar
  143. 143.
    Vemuri GN, Eiteman MA, Altman E (2002) Succinate production in dual phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28:325–332CrossRefGoogle Scholar
  144. 144.
    Wu H, Li ZM, Zhou L et al (2007) Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl Environ Microbiol 73:7837–7843CrossRefGoogle Scholar
  145. 145.
    Donnelly MI, Sanville-Millard CY, Nghiem NP (2004) Method to produce succinic acid from raw hydrolysates. US Patent 6,743,610Google Scholar
  146. 146.
    Andersson C, Hodge D, Berglund KA et al (2007) Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnol Prog 23:381–388CrossRefGoogle Scholar
  147. 147.
    Millard CS, Chao YP, Liao JC et al (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol 62:1808–1810Google Scholar
  148. 148.
    Lin H, Vadali RV, Bennett GN et al (2004) Increasing the Acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli. Biotechnol Prog 20:1599–1604CrossRefGoogle Scholar
  149. 149.
    Sanchez AM, Bennett GN, San KY (2005) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol Prog 21:358–365CrossRefGoogle Scholar
  150. 150.
    Sanchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239CrossRefGoogle Scholar
  151. 151.
    Lee SJ, Lee DY, Kim TY et al (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71:7880–7887CrossRefGoogle Scholar
  152. 152.
    Jantama K, Haupt MJ, Svoronos SA et al (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153CrossRefGoogle Scholar
  153. 153.
    Jantama K, Zhang X, Moore JC et al (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101:881–893CrossRefGoogle Scholar
  154. 154.
    Bothast RJ, Nichols NN et al (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875CrossRefGoogle Scholar
  155. 155.
    Hernández-Montalvo V, Valle F, Bolivar F et al (2001) Characterization of sugar mixtures by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57:186–191CrossRefGoogle Scholar
  156. 156.
    Korner H, Sofia HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592CrossRefGoogle Scholar
  157. 157.
    Martinez A, Rodríguez ME, Wells ML et al (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293CrossRefGoogle Scholar
  158. 158.
    Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125CrossRefGoogle Scholar
  159. 159.
    Novotny MJ, Frederickson WL, Waygood EB et al (1985) Allosteric regulation of glycerol kinase by enzyme III glc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. J Bacteriol 162:810–816Google Scholar
  160. 160.
    Plumbridge J (2002) Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol 5:187–193CrossRefGoogle Scholar
  161. 161.
    Prüb BM, Campbell JW, Van Dyk TK et al (2003) FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185:534–543CrossRefGoogle Scholar
  162. 162.
    Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the U.S. Department of Energy’s research and development activities for bioethanol. Biotechnol Prog 15:817–827CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • M. Orencio-Trejo
    • 1
  • J. Utrilla
    • 1
  • M. T. Fernández-Sandoval
    • 1
  • G. Huerta-Beristain
    • 1
  • G. Gosset
    • 1
  • A. Martinez
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations