Whole Cell Sensing Systems I pp 109-130

Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 117)

Surface Functionalization for Protein and Cell Patterning

  • Pascal Colpo
  • Ana Ruiz
  • Laura Ceriotti
  • François Rossi
Chapter

Abstract

The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic ‘natural environment’ in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

Keywords

Surface chemistry patterning techniques microfabrication selfassembled monolayers plasma polymers soft lithography 

References

  1. 1.
    Ratner BD, Bryant S (2004) Biomaterials: where we have been and where. we are going. Annu Rev Biomed Eng 6:41–75Google Scholar
  2. 2.
    Kasemo B (2002) Biological surface science. Surf Sci 500:656–677Google Scholar
  3. 3.
    Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492Google Scholar
  4. 4.
    Bhadriraju K, Chen CS (2002) Engineering cellular microenvironments to improve cell-based drug testing. Drug Disc Today 7:612–620Google Scholar
  5. 5.
    Hartung T (2007) Food for thought on cell culture. Altex 24(3):143–147Google Scholar
  6. 6.
    Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2:119–125Google Scholar
  7. 7.
    Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22:863–866Google Scholar
  8. 8.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428Google Scholar
  9. 9.
    Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita JB, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953Google Scholar
  10. 10.
    10.Thery M, Racine V, Piel M, Pepin A, Dimitrov A, Chen Y, Sibarita JB, Bornens M (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci U S A 103(52):19771–19776Google Scholar
  11. 11.
    Khetani SR, Bhatia SN (2007) Microscale culture of human liver cells for drug development. Nat Biotechnol Lett 2007:1–7Google Scholar
  12. 12.
    Ziegler C (2000) Cell-based biosensors. Fresenius J Anal Chem 366:552–559Google Scholar
  13. 13.
    Elad T, Lee JH, Belkin S, Gu MB (2008) Microbial whole-cell arrays. Microb Biotechnol 1(2):137–148Google Scholar
  14. 14.
    Garcia AJ (2006) Interfaces to control cell-biomaterial adhesive interactions. Adv Polym Sci 203:171–190Google Scholar
  15. 15.
    Arnold M, Cavalcanti-Adam A, Glass R, Blummel J, Eck W, Kessler H, Spatz JP (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chem Phys Chem 3:383–388Google Scholar
  16. 16.
    Mrksich M (2002) What can surface chemistry do for cell biology? Curr Opin Chem Biol 6:794–797Google Scholar
  17. 17.
    Underwood PA, Steel JG, Dalton BA (1993) Effects of polystyrene surface chemistry on the biological activity of solid phase fibronectin and vitronectin, analysed with monoclonal antibodies. J Cell 104(3):793–803Google Scholar
  18. 18.
    Andrade JD, Hlady VL, Wagenen RAV (1984) Effects of plasma protein adsorption on protein conformation and activity. Pure Appl Chem 56:1345–1350Google Scholar
  19. 19.
    Wertz CF, Santore MM (1999) Adsorption and relaxation kinetics of albumin and fibrinogen on hydrophobic surfaces: single-species and competitive behavior. Langmuir 15:8884–8894Google Scholar
  20. 20.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169Google Scholar
  21. 21.
    Mrksich M, Whitesides GM (1996) Using self assembled monolayers to understand the interactions of made man surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 25:55–78Google Scholar
  22. 22.
    Michael KE, Vernekar VN, Keselowsky BG, Meredith JC, Latour RA, Garcia AJ (2003) Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19:8033–8040Google Scholar
  23. 23.
    Keselowsky BG, Collard DM, Garcia AJ (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25:5947–5954Google Scholar
  24. 24.
    Lan MA, Gersbach CA, Michael KE, Keselowsky BG, Garcia AJ (2005) Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 26:4523–4531Google Scholar
  25. 25.
    Lan S, Veiseh M, Zhang M (2005) Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosens Bioelectron 20:1697–1708Google Scholar
  26. 26.
    Wang H, He Y, Ratner BD, Jiang S (2005) Modulating cell adhesion and spreading by control of FnIII7–10 orientation on charged self–assembled monolayers (SAMs) of alkanethiolates. J Biomed Mater Res A 77A(4):672–678Google Scholar
  27. 27.
    Liu L, Chen S, Giachelli C, Ratner B, Jiang S (2005) Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion. J Biomed Mater Res A 74A:23–31Google Scholar
  28. 28.
    Faucheux N, Schweiss R, Lutzow K, Werner L, Groth L (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730Google Scholar
  29. 29.
    Hersel U, Dahmen C, Kessler H (2003) RGD-modified polymers: biomaterials for. stimulated cell adhesion and beyond. Biomaterials 24:4385–4415Google Scholar
  30. 30.
    Roberts C, Chen CS, Mrksich M, Martichonok V, Ingber DE, Whitesides GM (1998) Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J Am Chem Soc 120:6548–6555Google Scholar
  31. 31.
    Houseman BT, Mrksich M (2001) Biomaterials 22:943–955Google Scholar
  32. 32.
    Cavalcanti-Adam EA, Micoulet A, Blummel J, Auernheimer J, Kessler H, Spatz JP (2006) Eur J Cell Biol 85:219–224Google Scholar
  33. 33.
    Castel D, Pitaval A et al (2006) Cell microarrays in drug discovery. Drug Disc Today 11(13):616–622Google Scholar
  34. 34.
    Ruiz A, Ceriotti L, Buzanska L, Hasiwa M, Bretagnol F, Ceccone G, Gilliland D, Rauscher H, Coecke S, Colpo P, Rossi F (2007) Controlled micropatterning of biomolecules for cell culturing. Microelectron Eng C 84:1733–1736Google Scholar
  35. 35.
    Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164Google Scholar
  36. 36.
    Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc 115:10714Google Scholar
  37. 37.
    Morra M (2000) J Biomater Sci Polym Ed 11:547Google Scholar
  38. 38.
    Kingshott P, Griesser HJ (1999) Curr Opin Solid State Mater Sci 4:403–412Google Scholar
  39. 39.
    Jeon SI, Lee JH, Andrade JD, de Gennes PG (1991) Colloid Interf Sci 142:159–166Google Scholar
  40. 40.
    Harder P, Grunze M, Dahnit R, Whitesides GM, Laibinis PE (1998) J Phys Chem B 102:426–429Google Scholar
  41. 41.
    Herrwerth S, Eck W, Reinhardt S, Grunze M (2000) J Am Chem Soc 125(31):9359–9366Google Scholar
  42. 42.
    Kenausis GL, Voros J, Elbert DL, Huang NP, Hofer R, Ruiz- Taylor L et al (2000) J Phys Chem B 104:3298–3309Google Scholar
  43. 43.
    Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM (2000) Surveying for surfaces that resist the adsoption of proteins. J Am Chem Soc 122:8303–8304Google Scholar
  44. 44.
    Ostuni E, Chapman RG, Holmin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620Google Scholar
  45. 45.
    Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17:6336–6343Google Scholar
  46. 46.
    Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17(4):1225–1233Google Scholar
  47. 47.
    Flynn NT, Tran T, Cima M, Langer R (2003) Long term stability of self- assembled monolayers in biological media. Langmuir 19:10909–10915Google Scholar
  48. 48.
    Jiang X, Bruzewicz DA, Thant MM, Whitesides GM (2004) Palladium as a substrate for self-assembled monolayers used in biotechnology. Anal Chem 76:6116–6121Google Scholar
  49. 49.
    Nelson CM, Raghavan S, Tan JL, Chen CS (2003) Degradation of micropatterned surfaces by cell-dependent and -independent processes. Langmuir 19:1493–1499Google Scholar
  50. 50.
    Ratner BD, Chilkoti A, Lopez GP (1990) In: d’Agostino R (ed) Plasma deposition, treatment and etching of polymers. Academic, San Diego, p 463Google Scholar
  51. 51.
    Sardella E, Favia P, Gristina R, Nardulli M, d’Agostino R (2006) Plasma Process Polym 3:456Google Scholar
  52. 52.
    Bretagnol Fr, Lejeune M, Papadopoulou A, Hasiwa M, Rauscher H, Ceccone G, Colpo P, Rossi F (2006) Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomater 2(2):165–172Google Scholar
  53. 53.
    Bretagnol F, Valsesia A, Ceccone G, Colpo P, Gilliland D, Ceriotti L, Hasiwa M, Rossi F (2006) Plasma Process Polym 3 (6-7): 443–455Google Scholar
  54. 54.
    Bretagnol F, Ceriotti L, Lejeune M, Papadopoulou A, Hasiwa M, Gilliland D, Ceccone G, Colpo P, Rossi F (2006) Functional micropatterned surfaces by combination of plasma polymerization and lift-off processes. Plasma Process Polym 3(1):30–38Google Scholar
  55. 55.
    Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma Process Polym 3:392–418Google Scholar
  56. 56.
    Cho DL, Claesson PM, Goelander CG, Johansson K (1990) Structure and surface properties of plasma polymerized acrylic acid layers. J Appl Polym Sci 41:1373Google Scholar
  57. 57.
    Candan S, Beck AJ, O’Toole L, Short RD (1998) Effects of processing parameters in plasma deposition: acrylic acid revisited. J Vacuum Sci Technol A 16(2):1702–1709Google Scholar
  58. 58.
    Detomaso L, Gristina R, Senesi GS, d’Agostino R, Favia P (2005) Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials 26:3831Google Scholar
  59. 59.
    Rossini P, Colpo P, Ceccone G, Jandt KD, Rossi F (2002) Surfaces engineering of polymeric films for biomedical applications. Mater Sci Eng C 1050:1Google Scholar
  60. 60.
    Lejeune M, Brétagnol M, Ceccone G, Colpo P, Rossi Fr (2006) Microstructural evolution of allylamine polymerized plasma films. Surf Coat Technol 200(20/21):5902–5907Google Scholar
  61. 61.
    61.Thissen H, Johnson G, Hartley PG, Kingshott P, Griesser HJ (2006) Two-dimensional patterning of thin coatings for the control o f tissue outgrowth. Biomaterials 27(1):35–43Google Scholar
  62. 62.
    Blättler T, Pasche S, Textor M, Griesser HJ (2006) High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Langmuir 22:5760–5769Google Scholar
  63. 63.
    Thierry B, Jasieniak M, de Smet LCPM, Vasilev K, Griesser HJ (2008) Reactive epoxy-functionalized thin films by a pulsed plasma polymerization process. Langmuir 24(18):10187–10195Google Scholar
  64. 64.
    Lopez GP, Ratner BD, Tidwell CD, Haycox CL, Rapoza RJ, Horbett TA (1992) Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces. J Biomed Mater Res 26:415Google Scholar
  65. 65.
    Haddow DB, Steele DA, Short RD, Dawson RA, Macneil S (2003) Plasma-polymerized surfaces for culture of human keratinocytes and transfer of cells to an in vitro wound-bed model. J Biomed Mater Res A 64A(1):80–87Google Scholar
  66. 66.
    Sardella E, Gristina R, Ceccone G, Gilliland DP, Apadopoulou-Bouraoui A, Rossi F, Senesi GS, Detomaso L, Favia P, d’Agostino R (2005) Control of cell adhesion and spreading by spatial microarranged PEO-like and pdAA domains. Surf Coat Technol 200:51Google Scholar
  67. 67.
    Johnston EE, Bryers JD, Ratner BD (2005) Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir 21:870–881Google Scholar
  68. 68.
    Bretagnol F, Kylian O, Hasiwa M, Ceriotti L, Rauscher H, Ceccone G, Gilliland D, Colpo P, Rossi F (2007) Sens Actuators B 123:283–292Google Scholar
  69. 69.
    Falconnet D, Csucs G, Grandin HM, Textor M (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27:3044–3063Google Scholar
  70. 70.
    Vörös J, Blättler T, Textor M (2005) Bioactive patterns at the 100 nm scale produced via multifunctional physisorbed adlayers. MRS Bull 30(3):202–206Google Scholar
  71. 71.
    Slater JH, Frey W (2008) Nanopatterning of fibronectin and the influence of integrin clustering on endothelial cell spreading and proliferation. J Biomed Mater Res A 87A(1):176–195Google Scholar
  72. 72.
    Blawas AS, Reichert WM (1998) Protein patterning. Biomaterials 19:595–609Google Scholar
  73. 73.
    Iwanaga S, Akiyama Y, Kikuchi A, Yamato M, Sakai K, Okano T (2005) Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation, Biomaterials 26:5395–5404Google Scholar
  74. 74.
    Nakayama H, Kikuchi Y, Takarada T, Nakayama H, Yamaguchi K, Maeda M (2006) Spatiotemporal control of cell adhesion on a self-assembled monolayer having a photocleavable protecting group. Anal Chim Acta 578:100–104Google Scholar
  75. 75.
    detrait E, Lhoest J-B, Knoops B, Bertrand P, van den Bosch, de Aguilar P (1998) Orientation of cell adhesion and growth on patterned heterogeneous polystyrene surface J Neurosci Methods 84:193–204Google Scholar
  76. 76.
    Mikulikova R, Moritz S, Gumpenberger T, Olbrich M, Romanin C, Bacakova L, Svorcik V, Heitz J (2005) Cell microarrays on photochemically modified polytetrafluoroethylene Biomaterials 26:5572–5580Google Scholar
  77. 77.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470Google Scholar
  78. 78.
    Fodor SP, Rava RP, Huang XC, Pease AC, Holmes CP, Adams CL (1993) Multiplexed biochemical assays with biological chips. Nature 364:555–556Google Scholar
  79. 79.
    Revzin A, Russel RJ, Yadavalli VK, Koh WG, Deister C, Hile DD, Mellott MB, Pishko MV (2001) Fabrication of poly(ethylene glydol) hydrogel microstructures using photolithography. Langmuir 17:5440–5447Google Scholar
  80. 80.
    Hahn MS, Taite LJ, Moon JJ, Rowland MC, Ruffino KA, West JL (2006) Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2524Google Scholar
  81. 81.
    Revzin A, Tompkins RG, Toner M (2003) Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 19:9855–9862Google Scholar
  82. 82.
    Goessl A, Garrison MD, Lhoest JB, Hoffman AS (2001) Plasma lithography – thin-film patterning of polymeric biomaterials by RF plasma polymerization I: Surface preparation and analysis. J Biomater Sci Polym Ed 12:721–738Google Scholar
  83. 83.
    Favia P, Sardella E, Gristina R, d’Agostino R (2003) Novel plasma processes for biomaterials: micro-scale patterning of biomedical polymers. Surf Coat Technol 169:707–711Google Scholar
  84. 84.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Engl 37:550–575Google Scholar
  85. 85.
    Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373Google Scholar
  86. 86.
    86.Zhao XM, Xia Y, Whitesides GM (1996) Fabrication of three-dimensional microstructures: microtransfer molding. Adv Mater 8:837–840Google Scholar
  87. 87.
    Xia Y, Kim E, Zhao XM, Rogers JA, Prentiss M, Whitesides GM (1996) Complex optical surfaces by replica molding against elastomeric masters. Science 273:347–349Google Scholar
  88. 88.
    Xia Y, McClelland JJ, Gupta R, Qin D, Zhao XM, et al (1997) Replica molding using polymeric materials: a practical step toward nanomanufacturing. Adv Mater 9:147–149Google Scholar
  89. 89.
    Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM (1994) Engineering cell shape and function. Science 264:696–698Google Scholar
  90. 90.
    Bernard A, Delamarche E, Schmid H, Michel B, Bosshard HR, Biebuyck H (1998) Printing patterns of proteins. Langmuir 14:2225–2229Google Scholar
  91. 91.
    Michel B, Bernard A, Bietsch A, Delamarche E, Geissler M, Juncker D, Kind H, Renault JP, Rothuizen H, Schmid H, Schmidt-Winkel P, Stutz R, Wolf H (2001) Printing meets lithography: soft lithography approaches to high-resolution patterning. IBM J Res Dev 45:697–719Google Scholar
  92. 92.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376Google Scholar
  93. 93.
    Delamarche E (2004) Microcontact printing of proteins. Nanobiotechnology, Chap 3. Wiley, New YorkGoogle Scholar
  94. 94.
    Raghjavan S, Chen CS (2004) Micropatterned environments in cell biology. Adv Mater 16:1303–1313Google Scholar
  95. 95.
    Shen CJ, Fu J, Chen CS (2008) Pattening cell and tissue function. Cell Mol Bioeng 1:15–23Google Scholar
  96. 96.
    Kumar G, Ho CC, Co CC (2007) Guiding cell migration using one-way micropattern arrays. Adv Mater 19:1084–1090Google Scholar
  97. 97.
    Dike L, Chen C, Mrksich M, Tien J, Whitesides G, Inger D (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In vitro cell. Dev Biol 35:441–448Google Scholar
  98. 98.
    Lehnert D, Wehrle-Haller B, David C, Weiland U, Ballestrem C, Imhof BA, Bastmeyer M (2004) Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J Cell Sci 117:41–52Google Scholar
  99. 99.
    Ruiz A, Buzanska L, Gilliland G, Rauscher H, Sirghi L, Sobanski T, Zychowicz Marzena, Ceriotti L, Bretagnol F, Coecke S, Colpo P, Rossi F (2008) Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials 29(36):4766–4774Google Scholar
  100. 100.
    Ruiz A, Buzanska L, Gilliland D, Rauscher H, Sirghi L, Sobanski T, Zychowicz M, Ceriotti L, Bretagnol F, Coecke S, Colpo P, Rossi F (2008) Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials 29:4766–4774Google Scholar
  101. 101.
    Pan V, McDevitt TC, Kim TK, Leach-Scampavia D, Stayton PS, Denton DD, Ratner BD (2002) Micro-scale cell patterning on nonfouling plasma polymerized tetraglyme coatings by protein microcontact printing. Plasma Polym 7:171–183Google Scholar
  102. 102.
    Delamarche E, Donzel C, Kamounah FS, Wolf H, Geissler M, Stutz R, Schmidt-Winkel P, Michel B, Mathieu HJ, Schaumburg K (2003) Microcontact printing using poly(dimethylsiloxane) stamps hydrophilized by poly(ethylene oxide) silanes. Langmuir 19:8749–8758Google Scholar
  103. 103.
    Delamarche E, Donzel C, Kamounah FS, Wolf H, Geissler M, Stutz R, Schmidt-Winkel P, Michel B, Mathieu HJ, Schaumburg K (2003) Langmuir 19:8749–8758Google Scholar
  104. 104.
    Delamarche E, Donzel C, Kamounah FS, Wolf H, Geissler M, Stutz R et al (2003) Microcontact printing using poly(dimethylsiloxane) stamps hydrophilized by poly(ethylene oxide) silanes. Langmuir 19:8749–8758Google Scholar
  105. 105.
    Jackman RJ, Duffy DC, Cherniavskaya O, Whitesides GM (1999) Patterning electroluminiscent materials at feature sizes as small as 5 μm using elastomeric membranes as masks for dry liftoff. Adv Mater 11:546–552Google Scholar
  106. 106.
    Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83–85Google Scholar
  107. 107.
    Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276:779–781Google Scholar
  108. 108.
    Chiu DT, Jeon NL, Huang S, Kane RS, Wargo CJ et al (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci U S A 97:2408–2413Google Scholar
  109. 109.
    Bhatia SN, Balis UJ, Yarmush ML, Toner M (1998) Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions. Biotechnol Prog 14:378–387Google Scholar
  110. 110.
    Fukuda J, Khademhosseini A, Yeh J, Eng G, Cheng J, Farokzad OC, Langer R (2006) Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials 27:1479Google Scholar
  111. 111.
    Yousaf MN, Houseman BT, Mrksich M (2001) Using electroactive substrates to pattern the attachment of two different cell populations. Proc Natl Acad Sci U S A 98:5992–5996Google Scholar
  112. 112.
    Jiang X, Ferrigno R, Mrksich M, Whitesides GM (2003) Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J Am Chem Soc 125:2366–2367Google Scholar
  113. 113.
    Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M et al (2005) The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 26:1885–1893Google Scholar
  114. 114.
    Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T (2002) Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23:561–567Google Scholar
  115. 115.
    Suh KY, Khademhosseini A, Yoo PJ, Langer R (2004) Patterning and separating infected bacteria using host-parasite and virus-antibody interactions. Biomed Microdev 6:223–229Google Scholar
  116. 116.
    Suh KY, Khademhosseini A, Yang JM, Eng G, Langer R (2004) Soft lithographic patterning of hyaluronic acid on hydrophilic substrates using molding and printing. Adv Mater 16:584–588Google Scholar
  117. 117.
    Bjerketorp J, Kansson SH, Belkin S, Jansson JK (2006) Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Biotechnol 17:43–49Google Scholar
  118. 118.
    Razatos A, Ong YL, Sharma MM, Georgiou G (1998) Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci U S A 95:11059–11064Google Scholar
  119. 119.
    Xu L, Robert L, Ouyang Q, Taddei F, Chen Y, Lindner AB, Baigl D (2007) Microcontact printing of living bacteria arrays with cellular resolution. Nanoletters 7:2068–2072Google Scholar
  120. 120.
    Saravia V, Kupcu S, Nolte M, Huber C, Pum D, Fery A, Sleytr UB, Toca-Herrera JL (2007) Bacterial patterning by micro-contact printing of PLL-g-PEG. J Biotechnol 130:247–252Google Scholar
  121. 121.
    Weibel DB, Lee A, Mayer M, Brady SF, Bruzewicz D, Yang J, DiLuzio WR, Clardy J, Whitesides GM (2005) Bacterial printing press that regenerates its ink: contact-printing bacteria using hydrogel stamps. Langmuir 21:6436–6442Google Scholar
  122. 122.
    Shim HW, Lee JH, Hwang TS, Rhee YW, Bae YM, Choi JS, Han J, Lee CS (2007) Patterning of proteins and cells on functionalized surfaces prepared by polyelectrolyte multilayers and micromolding in capillaries. Biosens Bioelectron 22:3188–3195Google Scholar
  123. 123.
    Howell SW, Inerowicv HD, Regnier FE, Reifenberg R (2003) Patterned protein microarrays for bacterial detection. Langmuir 19:436–439Google Scholar
  124. 124.
    Suo Z, Avci R, Yang X, Pascal DW (2008) Efficient immobilization and patterning of live bacterial cells. Langmuir 24:4161–4167Google Scholar
  125. 125.
    Yi DK, Kim MJ, Turner L, Breuer KS, Kim DY (2006) Colloid lithography-induced polydimethylsiloxane microstructures and their application to cell patterning. Biotechnol Lett 28:169–173Google Scholar
  126. 126.
    Akselrod GM, Timp W, Mirsaidov U, Zhao Q, Li C, Timp R, Matsudaira P, Timp G (2006) Laser-guided assembly of heterotypic three-dimensiona living cell microarrays. Biophys J 91:3465–3473Google Scholar
  127. 127.
    Kuschel C, Steuer H, Maurer AN, Kanzok B, Stoop R, Angres B (2006) Cell adhesion profiling using extracellular matrix protein microarrays. BioTechniques 40:523–530Google Scholar
  128. 128.
    128.Soen Y, Mori A, Palmer TD, Brown PO (2006) Exploring the regulation of human neural precursor cell differentiation using arrays of signalling microenvironments. Mol Syst Biol 2:37Google Scholar
  129. 129.
    Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224Google Scholar
  130. 130.
    Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 23(294):1708–1712Google Scholar
  131. 131.
    El-Ali1 J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(27):403–411Google Scholar
  132. 132.
    Yeo WS, Yousaf MN, Mrksich MJ (2003) Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells. Am Chem Soc 125(49):14994–14995Google Scholar
  133. 133.
    Fink J, Thery M et al (2007) Comparative study and improvement of current cell micro-patterning techniques. Lab Chip 7:672–680Google Scholar
  134. 134.
    Anderson JR, Chiu DT, Jackman RJ, Cherniavskaya O, McDonald JC et al (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164Google Scholar
  135. 135.
    Latour RA (2005) Encyclopedia of Biomaterials and Biomedical Engineering, ed. G.L.B.G. Wnek. New York: Taylor & FrancisGoogle Scholar
  136. 136.
    Pierschbacher MD, Ruoslahti E (1984) The cell attachment activity of fibronectin can be duplicated by small fragments of the molecule. Nature 309:30–33Google Scholar
  137. 137.
    Geissler and Xia (2004) Patterning: Principles and Some New Developments, Advanced materials, vol.16, Issue 15, Pages 1249–1269Google Scholar
  138. 138.
    Albrecht DR, Underhill GH, Wassermann TB, Sah RL, Bhatia SN. (2006) Probing the role of multicellular organization in 3D microenvironments. Nature Methods 3, 369–375Google Scholar
  139. 139.
    Cerotti L, Buzanska L, Rauscher H, Mannelli I, Sirghi L, Gilliland D, Hasiwa M, Bretagnol F, Zychowicz M, Ruiz A, Bremer S, Coecke S, Colpo P and Rossi F (2009) Fabrication and characterization of protein arrays for stem cell patterning. Soft Matter 5:1406–1416Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pascal Colpo
    • 1
  • Ana Ruiz
    • 1
  • Laura Ceriotti
    • 1
  • François Rossi
    • 1
  1. 1.European Commission, Joint Research CentreInstitute for Health and Consumer ProtectionIspraItaly

Personalised recommendations