Totipotency, Pluripotency and Nuclear Reprogramming

  • Shoukhrat Mitalipov
  • Don Wolf
Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 114)


Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient’s own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.


Embryonic stem cells iPS cells Pluripotent Somatic cell nuclear transfer Totipotent 


  1. 1.
    Nicholas J, Hall B (1942) Experiments on developing rats: II. The development of isolated blastomeres and fused eggs. J Exp Zool 90:441–459CrossRefGoogle Scholar
  2. 2.
    Johnson WH et al (1995) Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec 137(1):15–16CrossRefGoogle Scholar
  3. 3.
    Willadsen SM, Polge C (1981) Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Vet Rec 108(10):211–213CrossRefGoogle Scholar
  4. 4.
    Tarkowski AK (1959) Experiments on the development of isolated blastomers of mouse eggs. Nature 184:1286–1287CrossRefGoogle Scholar
  5. 5.
    Mitalipov SM et al (2002) Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biol Reprod 66(5):1449–1455CrossRefGoogle Scholar
  6. 6.
    Minami N, Suzuki T, Tsukamoto S (2007) Zygotic gene activation and maternal factors in mammals. J Reprod Dev 53(4):707–715CrossRefGoogle Scholar
  7. 7.
    Mitalipov SM et al (2002) Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol Reprod 66(5):1367–1373CrossRefGoogle Scholar
  8. 8.
    Ozil JP (1983) Production of identical twins by bisection of blastocysts in the cow. J Reprod Fertil 69(2):463–468CrossRefGoogle Scholar
  9. 9.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefGoogle Scholar
  10. 10.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by terato-carcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638CrossRefGoogle Scholar
  11. 11.
    Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRefGoogle Scholar
  12. 12.
    Ginis I, Rao MS (2003) Toward cell replacement therapy: promises and caveats. Exp Neurol 184(1):61–77CrossRefGoogle Scholar
  13. 13.
    Dawson L et al (2003) Safety issues in cell-based intervention trials. Fertil Steril 80(5):1077–1085CrossRefGoogle Scholar
  14. 14.
    Taylor CJ et al (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366(9502):2019–2025CrossRefGoogle Scholar
  15. 15.
    Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441(7097):1061–1067CrossRefGoogle Scholar
  16. 16.
    Gan Q et al (2007) Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25(1):2–9CrossRefGoogle Scholar
  17. 17.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080CrossRefGoogle Scholar
  18. 18.
    Campbell KH et al (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66CrossRefGoogle Scholar
  19. 19.
    Wilmut I et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature (London) 385(6619):810–813CrossRefGoogle Scholar
  20. 20.
    Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morph 10:622–640Google Scholar
  21. 21.
    Pomerantz J, Blau HM (2004) Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat Cell Biol 6(9):810–816CrossRefGoogle Scholar
  22. 22.
    Wakayama T et al (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374CrossRefGoogle Scholar
  23. 23.
    Kato Y et al (1998) Eight calves cloned from somatic cells of a single adult. Science 282(5396):2095–2098CrossRefGoogle Scholar
  24. 24.
    Cibelli JB et al (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280(5367):1256–1258CrossRefGoogle Scholar
  25. 25.
    Polejaeva IA et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature (London) 407(6800):86–90CrossRefGoogle Scholar
  26. 26.
    Baguisi A et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17(5):456–461CrossRefGoogle Scholar
  27. 27.
    Chesne P et al (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20(4):366–369CrossRefGoogle Scholar
  28. 28.
    Shin T et al (2002) A cat cloned by nuclear transplantation. Nature 415(6874):859CrossRefGoogle Scholar
  29. 29.
    Woods GL et al (2003) A mule cloned from fetal cells by nuclear transfer. Science 301(5636):1063CrossRefGoogle Scholar
  30. 30.
    Galli C et al (2003) Pregnancy: a cloned horse born to its dam twin. Nature 424(6949):635CrossRefGoogle Scholar
  31. 31.
    Zhou Q et al (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302(5648):1179CrossRefGoogle Scholar
  32. 32.
    Lee BC et al (2005) Dogs cloned from adult somatic cells. Nature 436(7051):641CrossRefGoogle Scholar
  33. 33.
    Capecchi MR. (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292CrossRefGoogle Scholar
  34. 34.
    Mak TW (2007) Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell 131(6):1027–1031CrossRefGoogle Scholar
  35. 35.
    Thomson JA et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92(17):7844–7848CrossRefGoogle Scholar
  36. 36.
    Thomson JA et al (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55(2):254–259CrossRefGoogle Scholar
  37. 37.
    Suemori H et al (2001) Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dyn 222(2):273–279CrossRefGoogle Scholar
  38. 38.
    Mitalipov S et al (2006) Isolation and characterization of novel rhesus monkey embryonic stem cell lines. Stem Cells 24(10):2177–2186CrossRefGoogle Scholar
  39. 39.
    Handyside AH et al (1987) Towards the isolation of embryonal stem cells from the sheep. Rouxs Arch Dev Biol 196:185–190CrossRefGoogle Scholar
  40. 40.
    Evans MJ et al (1990) Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 33:125–128CrossRefGoogle Scholar
  41. 41.
    Notarianni E et al (1990) Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J Reprod Fertil 41(Suppl):51–56Google Scholar
  42. 42.
    Giles JR et al (1993) Pluripotency of cultured rabbit inner cell mass cells detected by isozyme analysis and eye pigmentation of fetuses following injection into blastocysts or morulae. Mol Reprod Dev 36(2):130–138CrossRefGoogle Scholar
  43. 43.
    Iannaccone PM et al (1994) Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol 163(1):288–292CrossRefGoogle Scholar
  44. 44.
    Gurdon JB, Colman A (1999) The future of cloning. Nature 402(6763):743–746CrossRefGoogle Scholar
  45. 45.
    Lanza RP, Cibelli JB, West MD (1999) Human therapeutic cloning. Nat Med 5(9):975–977CrossRefGoogle Scholar
  46. 46.
    Munsie MJ et al (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10(16):989–992CrossRefGoogle Scholar
  47. 47.
    Brambrink T et al (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 103:933–938CrossRefGoogle Scholar
  48. 48.
    Wakayama S et al (2006) Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 24(9):2023–2033CrossRefGoogle Scholar
  49. 49.
    Stojkovic M et al (2005) Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online 11(2):226–231CrossRefGoogle Scholar
  50. 50.
    Mitalipov SM et al (2002) Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol Reprod 66(5):1367–1373CrossRefGoogle Scholar
  51. 51.
    Kennedy D (2006) Editorial retraction. Science 311:336CrossRefGoogle Scholar
  52. 52.
    Mitalipov SM et al (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod 22(8):2232–2242CrossRefGoogle Scholar
  53. 53.
    Byrne JA et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497–502CrossRefGoogle Scholar
  54. 54.
    Condic ML (2008) Alternative sources of pluripotent stem cells: altered nuclear transfer. Cell Prolif 41(Suppl 1):7–19Google Scholar
  55. 55.
    Hurlbut WB (2005) Altered nuclear transfer: a way forward for embryonic stem cell research. Stem Cell Rev 1(4):293–300CrossRefGoogle Scholar
  56. 56.
    Niwa H et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929CrossRefGoogle Scholar
  57. 57.
    Mitalipov SM et al (2003) Oct-4 expression in pluripotent cells of the rhesus monkey. Biol Reprod 69(6):1785–1792CrossRefGoogle Scholar
  58. 58.
    Torres-Padilla ME et al (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445(7124):214–218CrossRefGoogle Scholar
  59. 59.
    Chawengsaksophak K et al (2004) Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci USA 101(20):7641–7645CrossRefGoogle Scholar
  60. 60.
    Strumpf D et al (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132(9):2093–2102CrossRefGoogle Scholar
  61. 61.
    Nishioka N et al (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–283CrossRefGoogle Scholar
  62. 62.
    Yagi R et al (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134(21):3827–3836CrossRefGoogle Scholar
  63. 63.
    Meissner A, Jaenisch R (2006) Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439(7073):212–215CrossRefGoogle Scholar
  64. 64.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  65. 65.
    Hanna J et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923CrossRefGoogle Scholar
  66. 66.
    Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefGoogle Scholar
  67. 67.
    Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRefGoogle Scholar
  68. 68.
    Park IH et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146CrossRefGoogle Scholar
  69. 69.
    Brambrink T et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2(2):151–159CrossRefGoogle Scholar
  70. 70.
    Boiani M et al (2002) Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev 16(10):1209–1219CrossRefGoogle Scholar
  71. 71.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317CrossRefGoogle Scholar
  72. 72.
    Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shoukhrat Mitalipov
    • 1
    • 2
    • 3
  • Don Wolf
    • 1
  1. 1.Division of Reproductive Sciences, Oregon National Primate Research CenterOregon Health and Science UniversityBeavertonUSA
  2. 2.Oregon Stem Cell CenterOregon Health and Science UniversityBeavertonUSA
  3. 3.Department of Obstetrics and Gynecology, School of MedicineOregon Health and Science UniversityBeavertonUSA

Personalised recommendations