Approaches to High-Performance Preparative Chromatography of Proteins

  • Yan SunEmail author
  • Fu-Feng Liu
  • Qing-Hong Shi
Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 113)


Preparative liquid chromatography is widely used for the purification of chemical and biological substances. Different from high-performance liquid chromatography for the analysis of many different components at minimized sample loading, high-performance preparative chromatography is of much larger scale and should be of high resolution and high capacity at high operation speed and low to moderate pressure drop. There are various approaches to this end. For biochemical engineers, the traditional way is to model and optimize a purification process to make it exert its maximum capability. For high-performance separations, however, we need to improve chromatographic technology itself. We herein discuss four approaches in this review, mainly based on the recent studies in our group. The first is the development of high-performance matrices, because packing material is the central component of chromatography. Progress in the fabrication of superporous materials in both beaded and monolithic forms are reviewed. The second topic is the discovery and design of affinity ligands for proteins. In most chromatographic methods, proteins are separated based on their interactions with the ligands attached to the surface of porous media. A target-specific ligand can offer selective purification of desired proteins. Third, electrochromatography is discussed. An electric field applied to a chromatographic column can induce additional separation mechanisms besides chromatography, and result in electrokinetic transport of protein molecules and/or the fluid inside pores, thus leading to high-performance separations. Finally, expanded-bed adsorption is described for process integration to reduce separation steps and process time.


Affinity ligand Bioseparation Chromatography Electrochromatography Expanded bed adsorption Protein Stationary phase 



We thank our colleagues and the researchers in our laboratory who contributed to the work described in this article. Financial supports from the Natural Science Foundation of China (No. 20636040) and the High-Tech Research and Development Program of China from the Ministry of Science and Technology of China (No. 2006AA02Z231) are also greatly appreciated.


  1. 1.
    Sadana A (1998) Bioseparation of proteins. Academic Press, San Diego, CAGoogle Scholar
  2. 2.
    Lightfoot EN, Moscariello JS (2004) Biotechnol Bioeng 87:259CrossRefGoogle Scholar
  3. 3.
    Neverovaa I, Van Eykb JE (2005) J Chromatogr B 815:51CrossRefGoogle Scholar
  4. 4.
    Chen C, Gonzalez FJ, Idle JR (2007) Drug Metabolism Rev 39:581CrossRefGoogle Scholar
  5. 5.
    Janson JC, Rydén L (ed) (1998) Protein purification: principles, high-resolution methods and application, 2nd edn. Wiley, New YorkGoogle Scholar
  6. 6.
    García AA, Bonen MR, Ramírez-Vick J, Sadaka M, Vuppu A (1999) Bioseparation process science. Blackwell Science, MA, USAGoogle Scholar
  7. 7.
    Sun Y (2005) Bioseparation engineering (in Chinese). Chemical Industry Press, Beijing, ChinaGoogle Scholar
  8. 8.
    Neue UD (2005) J Chromatogr A 1079:153CrossRefGoogle Scholar
  9. 9.
    Brooks CA, Cramer SM (1992) AIChE J 38:1969CrossRefGoogle Scholar
  10. 10.
    Li Y, Pinto NG (1994) J Chromatogr A 658:445CrossRefGoogle Scholar
  11. 11.
    Raje P, Pinto NG (1997) J Chromatogr A 760:89CrossRefGoogle Scholar
  12. 12.
    Zhang SP, Sun Y (2002) J Chromatogr A 957:89CrossRefGoogle Scholar
  13. 13.
    Chen J, Sun Y (2003) J Chromatogr A 992:29CrossRefGoogle Scholar
  14. 14.
    Zhang SP, Sun Y (2003) Ind Eng Chem Res 42:1235CrossRefGoogle Scholar
  15. 15.
    Bosma JC, Wesselingh JA (2004) AIChE J 50:848CrossRefGoogle Scholar
  16. 16.
    Su XL, Sun Y (2006) AIChE J 52:2921CrossRefGoogle Scholar
  17. 17.
    Zhou XP, Su XL, Sun Y (2007) Biotechnol Prog 23:1118CrossRefGoogle Scholar
  18. 18.
    Bosma JC, Wesselingh JA (1998) AIChE J 44:2399CrossRefGoogle Scholar
  19. 19.
    Zhang SP, Sun Y (2001) Biotechnol Bioeng 75:710CrossRefGoogle Scholar
  20. 20.
    Zhang SP, Sun Y (2004) Biotechnol Prog 20:207CrossRefGoogle Scholar
  21. 21.
    Shi QH, Zhou Y, Sun Y (2005) Biotechnol Prog 21:516CrossRefGoogle Scholar
  22. 22.
    Shen H, Frey DD (2005) J Chromatogr A 1079:92CrossRefGoogle Scholar
  23. 23.
    Wesselingh JA, Bosma JC (2001) AIChE J 47:1571CrossRefGoogle Scholar
  24. 24.
    Xue B, Sun Y (2001) J Chromatogr A 921:109CrossRefGoogle Scholar
  25. 25.
    Zhang SP, Sun Y (2002) AIChE J 48:178CrossRefGoogle Scholar
  26. 26.
    Chen WD, Dong XY, Sun Y (2002) J Chromatogr A 962:29CrossRefGoogle Scholar
  27. 27.
    Carta G, Ubiera AR, Pabst TM (2005) Chem Eng Technol 28:1252CrossRefGoogle Scholar
  28. 28.
    Chen WD, Dong XY, Bai S, Sun Y (2003) Biochem Eng J 14:45CrossRefGoogle Scholar
  29. 29.
    Yang K, Sun Y (2007) Biochem Eng J 37:298CrossRefGoogle Scholar
  30. 30.
    Jungbauer A, Kaltenbrunner O (1996) Biotechnol Bioeng 52:223CrossRefGoogle Scholar
  31. 31.
    Xia F, Nagrath D, Cramer SM (2003) J Chromatogr A 989:47CrossRefGoogle Scholar
  32. 32.
    Li W, Zhang SP, Sun Y (2004) Biochem Eng J 22:63CrossRefGoogle Scholar
  33. 33.
    Li P, Xiu GH, Rodrigues AE (2004) Chem Eng Sci 59:3091CrossRefGoogle Scholar
  34. 34.
    Jozwik M, Kaczmarski K, Freitag R (2005) J Chromatogr A 1073:111CrossRefGoogle Scholar
  35. 35.
    Li W, Li Y, Sun Y (2005) Chem Eng Sci 60:4780CrossRefGoogle Scholar
  36. 36.
    Ljunglöf A, Thömmes J (1998) J Chromatogr A 813:387CrossRefGoogle Scholar
  37. 37.
    Hubbuch J, Linden T, Knieps E, Thömmes J, Kula MR (2002) Biotechnol Bioeng 80:359CrossRefGoogle Scholar
  38. 38.
    Dziennik SR, Belcher EB, Barker GA, DeBergalis MJ, Fernandez SE, Lenhoff AM (2003) Proc Natl Acad Sci U S A 100:420CrossRefGoogle Scholar
  39. 39.
    Hubbuch J, Linden T, Knieps E, Ljunglöf A, Thömmes J, Kula MR (2003) J Chromatogr A 1021:93CrossRefGoogle Scholar
  40. 40.
    Hubbuch J, Linden T, Knieps E, Thömmes J, Kula MR (2003) J Chromatogr A 1021:105CrossRefGoogle Scholar
  41. 41.
    Zhou XP, Li W, Shi QH, Sun Y (2006) J Chromatogr A 1103:110CrossRefGoogle Scholar
  42. 42.
    Yang K, Shi QH, Sun Y (2006) J Chromatogr A 1136:19CrossRefGoogle Scholar
  43. 43.
    Tyn MT, Gusek TW (1990) Biotechnol Bioeng 35:327CrossRefGoogle Scholar
  44. 44.
    Teeters MA, Conrardy SE, Thomas BL, Root TW, Lightfoot EN (2003) J Chromatogr A 989:165CrossRefGoogle Scholar
  45. 45.
    Zhang SP, Sun Y (2002) J Chromatogr A 964:35CrossRefGoogle Scholar
  46. 46.
    Boyer PM, Hsu JT (1992) AIChE J 38:259CrossRefGoogle Scholar
  47. 47.
    Guiochon G, Shirazi SG, Katti AM (1994) Fundamentals of preparative and nonlinear chromatography. Academic Press, BostonGoogle Scholar
  48. 48.
    Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York, pp 180–199Google Scholar
  49. 49.
    Afeyan NB, Fulton SP, Gordon NF, Mazsaroff I, Várady L, Regnier FE (1990) Biotechnol 8:203CrossRefGoogle Scholar
  50. 50.
    Collins WE (1997) Sep Purif Methods 26:215CrossRefGoogle Scholar
  51. 51.
    DePhillips P, Lenhoff AM (2000) J Chromatogr A 883:39CrossRefGoogle Scholar
  52. 52.
    Zhou X, Xue B, Sun Y (2001) Biotechnol Prog 17:1093CrossRefGoogle Scholar
  53. 53.
    Zhou X, Xue B, Bai S, Sun Y (2002) Biochem Eng J 11:13CrossRefGoogle Scholar
  54. 54.
    Yao Y, Lenhoff AM (2004) J Chromatogr A 1037:273CrossRefGoogle Scholar
  55. 55.
    Afeyan NB, Gordon NF, Mazsaroff I, Várady L, Fulton SP (1990) J Chromatogr 519:1CrossRefGoogle Scholar
  56. 56.
    Afeyan NB, Fulton SP, Regnier FE (1991) J Chromatogr 544:267CrossRefGoogle Scholar
  57. 57.
    Gustavsson PE, Larsson PO (1996) J Chromatogr A 734:231CrossRefGoogle Scholar
  58. 58.
    Gottschalk I, Gustavsson PE, Ersson B, Lundahl P (2003) J Chromatrogr A 784:203Google Scholar
  59. 59.
    Tiainen P, Larsson PO (2007) J Chromatogr A 1138:84CrossRefGoogle Scholar
  60. 60.
    Sun GY, Shi QH, Sun Y (2004) J Chromatogr A 1061:159CrossRefGoogle Scholar
  61. 61.
    Zhang ML, Sun Y (2001) J Chromatogr A 922:77CrossRefGoogle Scholar
  62. 62.
    Shi Y, Dong XY, Sun Y (2002) Chromatographia 55:405CrossRefGoogle Scholar
  63. 63.
    Shi Y, Sun Y (2003) Chromatographia 57:29CrossRefGoogle Scholar
  64. 64.
    Wu L, Bai S, Sun Y (2003) Biotechnol Prog 19:1300CrossRefGoogle Scholar
  65. 65.
    Chen JL, Bai S, Sun Y (2003) Chromatographia 58:701Google Scholar
  66. 66.
    Li Y, Dong XY, Sun Y (2005) Biochem Eng J 27:33CrossRefGoogle Scholar
  67. 67.
    Li Y, Dong XY, Sun Y (2007) J Appl Polym Sci 104:2205CrossRefGoogle Scholar
  68. 68.
    Shi QH, Zhou X, Sun Y (2005) Biotechnol Bioeng 92:643CrossRefGoogle Scholar
  69. 69.
    Wang DM, Hao G, Shi QH, Sun Y (2007) J Chromatogr A 1146:32CrossRefGoogle Scholar
  70. 70.
    Wang DM, Sun Y (2007) Biochem Eng J 37:332CrossRefGoogle Scholar
  71. 71.
    Brandt S, Goffe RA, Kessler SB, O’Connor JL, Zale SE (1988) Biotechnology 6:779CrossRefGoogle Scholar
  72. 72.
    Thömmes J, Kula MR (1995) Biotechnol Prog 11:367Google Scholar
  73. 73.
    Zhou JX, Tressel T (2006) Biotechnol Prog 22:341CrossRefGoogle Scholar
  74. 74.
    Boi C (2007) J Chromatogr A 848:19Google Scholar
  75. 75.
    Haber C, Skupsky J, Lee A, Lander R (2004) Biotechnol Bioeng 88:26CrossRefGoogle Scholar
  76. 76.
    Svec F, Fréchet JMJ (1999) Ind Eng Chem Res 38:34CrossRefGoogle Scholar
  77. 77.
    Jungbauer A, Hahn R (2006) J Sep Sci 27:767CrossRefGoogle Scholar
  78. 78.
    Svec F, Tennikova TB, Deyl Z (2003) Monolithic materials: preparation, properties and applications. J Chromatography Library, Elsevier, Amsterdam, Netherlands, pp 1–773Google Scholar
  79. 79.
    Hjertén S (1999) Ind Eng Chem Res 38:1205CrossRefGoogle Scholar
  80. 80.
    Zhang ML, Sun Y (2001) J Chromatogr A 912:31CrossRefGoogle Scholar
  81. 81.
    Du KF, Yang D, Sun Y (2007) J Chromatogr A 1163:212CrossRefGoogle Scholar
  82. 82.
    Azarkan M, Huet J, Baeyens-Volant D, Looze Y, Vandenbussche G (2007) J Chromatogr B 849:81CrossRefGoogle Scholar
  83. 83.
    Roque ACA, Silva CSO, Taipa MÂ (2007) J Chromatogr A 1160:44CrossRefGoogle Scholar
  84. 84.
    Lowe CR (2001) Curr Opin Chem Biol 5:248CrossRefGoogle Scholar
  85. 85.
    Falciani C, Lozzi L, Pini A, Bracci L (2005) Chem Biol 12:417CrossRefGoogle Scholar
  86. 86.
    Roque ACA, Taipa MÂ, Lowe CR (2004) J Mol Recognit 17:262CrossRefGoogle Scholar
  87. 87.
    Jacobsen B, Gårdsvoll H, Funch FJ, Østergaard S, Barkholt V, Ploug M (2007) Protein Exp Purif 52:286CrossRefGoogle Scholar
  88. 88.
    Bellofiore P, Petronzelli F, Martino TD, Minenkova O, Bombardi V, Anastasi AM, Lindstedt R, Felici F, Santis RD, Verdoliva A (2006) J Chromatogra A 1107:182CrossRefGoogle Scholar
  89. 89.
    Lowe CR, Burton SJ, Burton NP, Alderton WK, Pitts JM, Thomas JA (1992) Trends Biotechnol 10:442CrossRefGoogle Scholar
  90. 90.
    Mondal K, Gupta MN (2006) Biomol Eng 23:59CrossRefGoogle Scholar
  91. 91.
    Labrou NE (2003) J Chromatogr B 790:67CrossRefGoogle Scholar
  92. 92.
    Platis D, Sotriffer CA, Clonis Y, Labrou NE (2006) J Chromatogr A 1128:138CrossRefGoogle Scholar
  93. 93.
    Katsos NE, Labrou NE, Clonis YD (2004) J Chromatogr B 807:277CrossRefGoogle Scholar
  94. 94.
    Lin DQ, Yao SJ (2007) Biotechnol Prog 23:904Google Scholar
  95. 95.
    Clonis YD (2006) J Chromatogr A 1101:1CrossRefGoogle Scholar
  96. 96.
    Rupasinghe CN, Spaller MR (2006) Curr Opin Chem Biol 10:188CrossRefGoogle Scholar
  97. 97.
    Roque ACA, Lowe CR (2006) Biotechnol Adv 24:17CrossRefGoogle Scholar
  98. 98.
    Melissis S, Labrou NE, Clonis YD (2006) J Chromatogr A 1122:63CrossRefGoogle Scholar
  99. 99.
    Melissis S, Labrou NE, Clonis YD (2007) Biotechnol J 2:121CrossRefGoogle Scholar
  100. 100.
    Liu FF, Wang T, Dong XY, Sun Y (2007) J Chromatogr A 1146:41CrossRefGoogle Scholar
  101. 101.
    Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Rev Drug Discov 3:935CrossRefGoogle Scholar
  102. 102.
    Yu HQ, Dong XY, Sun Y (2004) Biochem Eng J 18:169CrossRefGoogle Scholar
  103. 103.
    Yu HQ, Dong XY, Sun Y (2004) Chromatographia 60:379CrossRefGoogle Scholar
  104. 104.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) J Mol Biol 161:269CrossRefGoogle Scholar
  105. 105.
    Kagawa M, Fujimoto Z, Momma M, Takase K (2003) J Bacteriol 185:6981CrossRefGoogle Scholar
  106. 106.
    Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470CrossRefGoogle Scholar
  107. 107.
    Liu FF, Dong XY, Wang T, Sun Y (2007) J Chromatogr A 1175:249CrossRefGoogle Scholar
  108. 108.
    Lamba D, Bauer M, Huber R, Fischer S, Rudolph R, Kohnert U, Bode W (1996) J Mol Biol 258:117CrossRefGoogle Scholar
  109. 109.
    Hamann CH, Hamnett A, Vielstich W (2007) Electrochemistry. Wiley, WeinheimGoogle Scholar
  110. 110.
    Nischang I, Tallarek U (2007) Electrophoresis 28:611CrossRefGoogle Scholar
  111. 111.
    Paces M, Kosek J, Marek M, Tallarek U, Seidel-Morgenstern A (2003) Electrophoresis 24:380CrossRefGoogle Scholar
  112. 112.
    Tan GM, Shi QH, Sun Y (2005) Electrophoresis 26:3084CrossRefGoogle Scholar
  113. 113.
    Cole KD, Cabezas Jr H (1995) Appl Biochem Biotechnol 54:159CrossRefGoogle Scholar
  114. 114.
    Leinweber FC, Tallarek U (2004) Langmuir 20:11637CrossRefGoogle Scholar
  115. 115.
    Rudge SR, Basak SK, Ladisch MR (1993) AIChE J 39:797CrossRefGoogle Scholar
  116. 116.
    Basak SK, Lad isch MR (1995) AIChE J 41:2499CrossRefGoogle Scholar
  117. 117.
    van Kreveld ME, van den Hoed N (1973) J Chromatogr 83:111CrossRefGoogle Scholar
  118. 118.
    Wan QH (1997) J Chromatogr A 782:181CrossRefGoogle Scholar
  119. 119.
    Stol R, Kok WT, Poppe H (1999) J Chromatogr A 853:45CrossRefGoogle Scholar
  120. 120.
    Venema E, Kraak JC, Poppe H, Tijssen R (1999) J Chromatogr A 837:3CrossRefGoogle Scholar
  121. 121.
    Hoppe H, Stol R, Kok WT (2002) J Chromatogr A 965:75CrossRefGoogle Scholar
  122. 122.
    Keim C, Ladisch MR (2000) Bioeng Biotechnol 70:71Google Scholar
  123. 123.
    Liu Z, Yin G, Feng SH, Wang DH, Ding FX, Yuan NJ (2001) J Chromatogr A 921:93CrossRefGoogle Scholar
  124. 124.
    Cole KD (1997) Biotechnol Prog 13:289CrossRefGoogle Scholar
  125. 125.
    Tan GM, Shi QH, Sun Y (2005) J Chromatogr A 1098:131CrossRefGoogle Scholar
  126. 126.
    Yuan W, Zhao GF, Dong XY, Sun Y (2006) J Sep Sci 29:2383CrossRefGoogle Scholar
  127. 127.
    Tong XD, Sun Y (2002) J Chromatogr A 977:173CrossRefGoogle Scholar
  128. 128.
    Zhou X, Shi QH, Bai S, Sun Y (2004) Chin J Chem Eng 12:310Google Scholar
  129. 129.
    Tan GM, Dong XY, Sun Y (2006) J Sep Sci 29:684CrossRefGoogle Scholar
  130. 130.
    Jia GD, Dong XY, Sun Y (2008) Sep Purif Technol 59:277CrossRefGoogle Scholar
  131. 131.
    Chase HA (1994) Trends Biotechnol 12:296CrossRefGoogle Scholar
  132. 132.
    Hjorth R (1997) Trends Biotechnol 15:2305CrossRefGoogle Scholar
  133. 133.
    Hansson M, Stahl S, Hjorth R, Uhlen M, Mokes T (1994) Biotechnology 12:285CrossRefGoogle Scholar
  134. 134.
    Jahanshahi M, Sun Y, Santos E, Pacek AW, Nienow AW, Lyddiatt A (2002) Biotechnol Bioeng 80:201CrossRefGoogle Scholar
  135. 135.
    Hubbuch J, Thömmes J, Kula MR (2005) Adv Biochem Eng Biotechnol 92:101Google Scholar
  136. 136.
    Tong XD, Dong XY, Sun Y (2002) Biochem Eng J 12:117CrossRefGoogle Scholar
  137. 137.
    Tong XD, Sun Y (2002) J Chromatogr A 943:63CrossRefGoogle Scholar
  138. 138.
    Sun Y, Pacek AW, Nienow AW, Lyddiatt A (2001) Biotechnol Bioprocess Eng 6:419CrossRefGoogle Scholar
  139. 139.
    Lyddiatt A (2002) Cur Opin Biotechnol 13:95CrossRefGoogle Scholar
  140. 140.
    Zhou X, Shi QH, Bai S, Sun Y (2004) Biochem Eng J 18:81CrossRefGoogle Scholar
  141. 141.
    Tong XD, Sun Y (2003) Biotechnol Prog 19:1721CrossRefGoogle Scholar
  142. 142.
    Ding Y, Sun Y (2005) Chem Eng Sci 60:917CrossRefGoogle Scholar
  143. 143.
    Bruce LJ, Chase HA (2001) Chem Eng Sci 56:3149CrossRefGoogle Scholar
  144. 144.
    Xue B, Tong XD, Sun Y (2003) AIChE J 49:2510CrossRefGoogle Scholar
  145. 145.
    Tong XD, Xue B, Sun Y (2003) Biochem Eng J 16:265CrossRefGoogle Scholar
  146. 146.
    Kaczmarski K, Bellot JC (2004) Biotechnol Prog 20:786CrossRefGoogle Scholar
  147. 147.
    Kaczmarski K, Bellot JC (2005) J Chromatogr A 1069:91CrossRefGoogle Scholar
  148. 148.
    Yang Z, Sun Y (2005) J Chromatogr A 1077:143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2009

Authors and Affiliations

  1. 1.Department of Biochemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations