Cell Isolation and Expansion Using Dynabeads ®

  • Axl A. Neurauter
  • Mark Bonyhadi
  • Eli Lien
  • Lars Nøkleby
  • Erik Ruud
  • Stephanie Camacho
  • Tanja Aarvak
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 106)

Abstract

This chapter describes the use of Dynabeads for cell isolation and expansion. Dynabeads are uniform polystyrene spherical beads that have been made magnetisable and superparamagnetic, meaning they are only magnetic in a magnetic field. Due to this property, the beads can easily be resuspended when the magnetic field is removed. The invention of Dynabeads made, by Professor John Ugelstad, has revolutionized the separation of many biological materials. For example, the attachment of target-specific antibodies to the surface of the beads allows capture and isolation of intact cells directly from a complex suspension such as blood. This is all accomplished under the influence of a simple magnetic field without the need for column separation techniques or centrifugation.

In general, magnetic beads coated with specific antibodies can be used either for isolation or depletion of various cell types. Positive or negative cell isolation can be performed depending on the nature of the starting sample, the cell surface markers and the downstream application in question. Positive cell isolation is the method of choice for unprocessed samples, such as whole blood, and for downstream molecular applications. Positive cell isolation can also be used for any downstream application after detachment and removal of the beads. Negative cell isolation is the method of choice when it is critical that cells of interest remain untouched, i.e., no antibodies have been bound to any cell surface markers on the cells of interest. Some cell populations can only be defined by multiple cell surface markers. Such populations of cells can be isolated by the combination of negative and positive cell isolation. By coupling Dynabeads with antibodies directed against cell surface activation molecules, the beads can be used both for isolation and expansion of the cells.

Dynabeads are currently used in two major clinical applications: 1) In the Isolex

® 300i Magnetic Cell Selection System for CD34 Stem Cell Isolation – 2) For ex vivo T cell isolation and expansion using Dynabeads

® ClinExVivo™ CD3/CD28 for clinical trials in novel adoptive immunotherapy.

Cell expansion Cell isolation Dynabeads Flow compatibility Negative isolation Positive isolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ugelstad J, Mørk PC, Herder Kaggerud K, Ellingsen T, Berge A (1980) Swelling of oligomer particles: New methods of preparation of emulsions and polymer dispersions. Adv Colloid Interface Sci 13:101 Google Scholar
  2. 2.
    Ugelstad J, Kilaas L, Aune O, Bjørgum J, Herje R, Schmid R, Stenstad P, Berge A (1994) Monodisperse polymer particles. In: Uhlén M, Hornes E, Olsvik Ø (eds) Advances of Biomagnetic Separation. Eaton Publ Comp, Natick, MA, pp 1–20 Google Scholar
  3. 3.
    Funderud S, Nustad K, Lea T, Vartdal F, Gaudernack G, Stenstad P, Ugelstad J (1987) Fractionation of lymphocytes by immunomagnetic beads. In: Klaus GGB (ed) Lymphocytes: A Practical Approach. IRL Press, Oxford, pp 55–65 Google Scholar
  4. 4.
    Luxembourg AT, Borrow P, Teyton L, Brunmark AB, Peterson PA, Jackson MR (1998) Biomagnetic isolation of antigen-specific CD8+ T cells usable in immunotherapy. Nat Biotech 16:281–285 Google Scholar
  5. 5.
    Marquez C, Trigueros C, Franco JM, Ramiro AR, Carrasco YR, Lopez-Botet M, Toribio ML (1998) Identification of a common developmental pathway for thymic natural killer cells and dendritic cells. Blood 91:2760–2771 Google Scholar
  6. 6.
    Soltys J, Swain SD, Sipes KM, Nelson LK, Hanson AJ, Kantele JM, Jutila MA, Quinn MT (1999) Isolation of bovine neutrophils with biomagnetic beads: Comparison with standard Percoll density gradient isolation methods. J Immunol Meth 226:71–84 Google Scholar
  7. 7.
    Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla-Favera R, Suciu-Foca N (2002) Tolerization of dendritic cells by T(S) cells: The crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243 Google Scholar
  8. 8.
    Garlie NK, LeFever AV, Siebenlist RE, Levine BL, June CH, Lum LG (1999) T cells co-activated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer. J Immunother 22:336-345 Google Scholar
  9. 9.
    Lum LG, LeFever AV, Treisman JS, Garlie NK, Hanson JP Jr (2001) Immune modulation in cancer patients after adoptive transfer of anti-CD3/anti-CD28-costimulated T cells-phase I clinical trial. J Immunother 24(5):408–419 Google Scholar
  10. 10.
    Liebowitz DN, Lee KP, June CH (1998) Costimulatory approaches to adoptive immunotherapy. Curr Opin Oncol 10(6):533–541 Google Scholar
  11. 11.
    Levine BL, Cotte J, Small CC, Carroll RG, Riley JL, Bernstein WB, Van Epps DE, Hardwick RA, June CH (1998) Large-scale production of CD4+ T cells from HIV-1-infected donors after CD3/CD28 costimulation. J Hematother 7:437–448 Google Scholar
  12. 12.
    Levine BL, Bernstein WB, Aronson NE, Schlienger K, Cotte J, Perfetto S, Humphries MJ, Ratto-Kim S, Birx DL, Steffens C, Landay A, Carroll RG, June CH (2002) Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med 8:47–53 Google Scholar
  13. 13.
    Thomas AK, June CH (2001) The promise of T-lymphocyte immunotherapy for the treatment of malignant disease. Cancer J 7:S67–S75 Google Scholar
  14. 14.
    Köhler G, Milstein C (1975) Continous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497 Google Scholar
  15. 15.
    Bosnes M, Bergholtz S, Borgnes A, Breivold E, Lycke K, Keiserud A, Borgen T, Lillehaug D (2002) Isolation of pure cells, Nuleic acids and Proteins from Single Cell Samples, Molecular and Cellur Proteomic 1–9 Addendum. HUPO First World Congress, Versailles France Google Scholar
  16. 16.
    Pisanic TR, Blackwell JD, Shubayev VI, Finones RR, Jin S (2007) Nanotoxicity of iron oxide nanoparticle nternalization in growing neurons. Biomaterials 28:2572–2581 Google Scholar
  17. 17.
    Berry CC, Wells S, Charles S, Curtis ASG (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557 Google Scholar
  18. 18.
    Smeland EB, Funderud S, Kvalheim G, Gaudernack G, Rasmussen AM, Rusten L, Wang MY, Tindle RW, Blomhoff HK, Egeland T (1992) Isolation and characterization of human hematopoietic progenitor cells: an effective method for positive selection of CD34+ cells. Leukemia 6(8):845–852 Google Scholar
  19. 19.
    Rasmussen AM, Smeland EB, Erikstein BK, Caignault L, Funderud S (1992) A new method for detachment of Dynabeads from positively selected B lymphocytes. J Immunol Meth 146(2):195–202 Google Scholar
  20. 20.
    Baize S, Kaplon J, Faure C, Pannetier D, Georges-Courbot MC, Deubel V (2004) Lassa virus infection of human dendritic cells and macrophages is productive but failsto activate cells. J Immunol 172:2861–2869 Google Scholar
  21. 21.
    Beckhove P, Feuerer M, Dolenc M, Schuetz F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P, Bastert G, Schirrmacher V, Umansky V (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76 Google Scholar
  22. 22.
    Friedl P, Noble PB, Zänker KS (1995) T lymphocyte locomotion in a three-dimensional collagen matrix: Expression and function of cell adhesion molecules. J Immunol 154:4973–4985 Google Scholar
  23. 23.
    Chabannon C, Cornletta K, Lotz JP, Rosenfeld C, Shlomchik M, Yanovitch S, Marolleau JP, Sledge G, Srour EF, Burtness B, Camerlo J, Gravis G, Lee-Fischer J, Faucher C, Chabbert I, Krause D, Maraninchi D, Mills B, Kunkel L, Oldham F, Blaise D, Viens P (1998) High-dose chemotherapy followed by reinfusion of selected CD34+ peripheral blood cells in patients with poor-prognosis breast cancer: a randomized multicentre study. Brit J Cancer 7:913 Google Scholar
  24. 24.
    Dreger P, Viehmann K, Von Neuhoff N, Glaubitz T, Petzold O, Glass B, Uharek L, Rautenberg P, Suttorp M, Mills B, Mitzky P, Schmitz B (1999) Autografting of highly purified peripheral blood progenitor cells following myeloablative therapy in patients with lymphoma: A prospective study of the long-term effects on tumor eradication, reconstitution of hematopoiesis, and immune recovery. Bone Marrow Transplant 24:153 Google Scholar
  25. 25.
    Abonour R, Scott KM, Kunkel LA, Robertson MJ, Hromas R, Graves V, Lazaridis EN, Cripe L, Gharpure V, Traycoff CM, Mills B, Srour EF, Cornetta K (1998) Autologous transplantation of mobilized peripheral blood CD34+ cells selected by immunomagnetic procedures in patients with multiple myeloma. Bone Marrow Transplant 22:957 Google Scholar
  26. 26.
    Rowley SD, Loken M, Radich J, Kunkel LA, Mills BJ, Gooley T, Holmberg L, Mcsweeney P, Beach K, Macleod B, Appelbaum F, Bensinger WI (1998) Isolation of CD34+ cells from blood stem cell components using the Baxter Isolex system. Bone Marrow Transplant 21:1253 Google Scholar
  27. 27.
    Bensinger W, Appelbaum F, Rowley S, Storb R, Sanders J, Lilleby K, Gooley T, Demirer T, Schiffman K, Weaver C (1996) Factors that influence collection and engraftment of autologous peripheral blood stem cells. J Clin Oncol 13:2547 Google Scholar
  28. 28.
    Falk M, Ussat S, Reiling N, Wesch D, Kabelitz D, Adam-Klages S (2004) Caspase inhibition blocks human T cell proliferation by suppressing appropriate regulation of IL-2, CD25 and cell cycle-associated proteins. J Immunol 173:5077–5085 Google Scholar
  29. 29.
    Mandrekar P, Catalano D, Dolganiuc A, Kodys K, Szabo G (2004) Inhibition of myeloid dendritic accessory cell function and induction of T cell anergy by alcohol correlates with decreased IL-12 production. J Immunol 173:3398–3407 Google Scholar
  30. 30.
    Sato K, Nakaoka T, Yamashita N, Yagita H, Kawasaki H, Morimoto C, Baba M, Matsuyama T (2005) TRAIL-transduced dendritic cells protect mice from acute graft-versus-host disease and leukemia relapse. J Immunol 174:4025–4033 Google Scholar
  31. 31.
    Arruvito L, Sanz M, Banham AH, Fainboim L (2007) Expansion of CD4 primary-coated Dynabeads CD25= and FOXP3+ Regulatory T Cells during the Follicular Phase of the Menstrual Cycle: Implications for Human Reproduction. J Immunol 178:2572–2578 Google Scholar
  32. 32.
    Jonuleit H, Schmitt E (2005) Regulatory T-cells in antitumor therapy: isolation and functional testing of CD4+CD25+ regulatory T-cells. Methods Mol Med 109:285–296 Google Scholar
  33. 33.
    Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M (2004) Large-scale in vitro expansion of polyclonal human CD4+ CD25high regulatory T cells. Blood 104(3):895–903 Google Scholar
  34. 34.
    Levine BL, Mosca JD, Riley JL, Carroll RG, Vahey MT, Jagodzinski LL, Wagner KF, Mayers DL, Burke DS, Weislow OS, St Louis DC, June CH (1996) Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science 272:1939–1943 Google Scholar
  35. 35.
    Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB, June CH (1997) Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 159:5921–5930 Google Scholar
  36. 36.
    Carroll RG, Riley JL, Levine BL, Feng Y, Kaushal S, Ritchey DW, Bernstein W, Weislow OS, Brown CR, Berger EA, June CH, St Louis DC (1997) Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+ T cells. Science 276:273–276 Google Scholar
  37. 37.
    Levine BL, Cotte J, Small CC, Carroll RG, Riley JL, Bernstein WB, Van Epps DE, Hardwick RA, June CH (1998) Large-scale production of CD4+ T cells from HIV-1-infected donors after CD3/CD28 costimulation. J Hematother 7:437–448 Google Scholar
  38. 38.
    Bonyhadi M, Frohlich M, Rasmussen A, Ferrand C, Grosmaire L, Robinet E, Leis J, Maziarz RT, Tiberghien P, Berenson RJ (2005) In vitro engagement of CD3 and CD28 corrects T cell defects in chronic lymphocytic leukemia. J Immunol 174:2366–2375 Google Scholar
  39. 39.
    Parmar S, Robinson SN, Komanduri K, St John L, Decker W, Xing D, Yang H, McMannis J, Champlin R, de Lima M, Mollderm J, Rieber A, Bonyhadi M, Berenson R, Shpall EJ (2006) Ex vivo expanded umbilical cord blood T cells maintain naive phenotype and TCR diversity. Cytotherapy 8:149–157 Google Scholar
  40. 40.
    Coito S, Sauce D, Duperrier A, Certoux JM, Bonyhadi ML, Collette A, Kuehlcke K, Herve P, Tiberghien P, Robinet E, Ferrand C (2004) Retrovirus-mediated gene transfer in human primary T lymphocytes induces an activation-and transduction/selection-dependent TCRBV repertoire skewing of gene-modified cells. Stem Cells Dev 13:71–81 Google Scholar
  41. 41.
    Bonyhadi M, Frohlich M, Rasmussen A, Ferrand C, Grosmaire L, Robinet E, Leis J, Maziarz RT, Tiberghien P, Berenson RJ (2005) In vitro engagement of CD3 and CD28 corrects T cell defects in chronic lymphocytic leukemia. J Immunol 174:2366–2375 Google Scholar
  42. 42.
    Hami L, Chana H, Craig S (2003) Comparison of a Static Process and a Bioreactor-based Process for the GMP Manufacture of Autologous Xcellerated T Cells for Clinical Trials. Bioprocess J 2(6):1–10 Google Scholar
  43. 43.
    Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE, Brenchley JM, Hill BJ, Roederer M, Douek DC, Koup RA (2006) Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med 203:2865–2877 Google Scholar
  44. 44.
    Kalamasz D, Long SA, Taniguchi R, Buckner JH, Berenson RJ, Bonyhadi M (2004) Optimization of Human T-Cell Expansion Ex Vivo Using Magnetic Beads Conjugated with Anti-CD3 and Anti-CD28 Antibodies. J Immunother 27:405–418 Google Scholar
  45. 45.
    Dang Y, Knutson KL, Goodell V, dela Rosa C, Salazar LG, Higgins D, Childs J, Disis ML (2007) Tumor antigen-specific T-cell expansion is greatly facilitated by in vivo priming. Clin Cancer Res 13:1883–1891 Google Scholar
  46. 46.
    Berger C, Blau AC, Clackson T, Riddell SR, Heimfeld S (2003) CD28 costimulation and immunoaffinity-based selection efficiently generate primary gene-modified T cells for adoptive immunotherapy. Blood 101:476–484 Google Scholar
  47. 47.
    Ferrand C, Robinet E, Contassot E, Certoux J-M, Lim A, Herve P, Tiberghien P (2000) Retrovirus-Mediated Gene Transfer in Primary T Lymphocytes: Influence of the transduction/Selection Process and of ex Vivo Expansion on the T Cell Receptor b Chain Hypervariable Region Repertoire. Human Gene Therapy 11:1151–1164 Google Scholar
  48. 48.
    Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT, Bakker A, Roberts MR, June CH, Jalali S, Lin AA, Pennathur-Das R, Hege KM (2000) Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 96:785–793 Google Scholar
  49. 49.
    Levine BL, Bernstein WB, Aronson NE, Schlienger K, Cotte J, Perfetto S, Humphries MJ, Ratto-Kim S, Birx DL, Steffens C, Landay A, Carroll RG, June CH (2002) Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med 8:47–53 Google Scholar
  50. 50.
    Laport GG, Levine BL, Stadtmauer EA, Schuster SJ, Luger SM, Grupp S, Bunin N, Strobl FJ, Cotte J, Zheng Z, Gregson B, Rivers P, Vonderheide RH, Liebowitz DN, Porter DL, June CH (2003) Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin's lymphoma following CD34-selected hematopoietic cell transplantation. Blood 102:2004–2013 Google Scholar
  51. 51.
    Rapoport AP, Levine BL, Badros A, Meisenberg B, Ruehle K, Nandi A, Rollins S, Natt S, Ratterree B, Westphal S, Mann D, June CH (2004) Molecular remission of CML after autotransplantation followed by adoptive transfer of costimulated autologous T cells. Bone Marrow Transplant 33:53–60 Google Scholar
  52. 52.
    Godfrey WR, Ge YG, Spoden DJ, Levine BL, June CH, Blazar BR, Porter SB (2004) In Vitro Expanded Human CD4+CD25+ T Regulatory Cells can Markedly Inhibit Allogeneic Dendritic Cell Stimulated MLR Cultures. Blood 104:453–461 Google Scholar
  53. 53.
    Godfrey WR, Spoden DJ, Ge YG, Baker SR, Liu B, Levine BL, June CH, Blazar BR, Porter SB (2005) Cord blood CD4+CD25+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 105:750–758 Google Scholar
  54. 54.
    Earle KE, Tang Q, Zhou X, Liu W, Zhu S, Bonyhadi ML, Bluestone JA (2005) In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation. Clin Immunol 115:3–9 Google Scholar
  55. 55.
    Karakhanova S, Munder M, Schneider M, Bonyhadi M, Ho AD, Goerner M (2006) Highly Efficient Expansion of Human CD4+CD25+ Regulatory T Cells for Cellular Immunotherapy in Patients with Graft-Versus-Host Disease. J Immunother 29:336–349 Google Scholar
  56. 56.
    Bondanza A, Valtolina V, Magnani Z, Ponzoni M, Fleischhauer K, Bonyhadi M, Traversari C, Sanvito F, Toma S, Radrizzani M, La Seta-Catamancio S, Ciceri F, Bordignon C, Bonini C (2006) Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood Mar 107(5):1828–1836 Google Scholar
  57. 57.
    Noonan K, Matsui W, Serafini P, Carbley R, Tan G, Khalili J, Bonyhadi M, Levitsky H, Whartenby K, Borrello I (2005) Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res 65:2026–2034 Google Scholar
  58. 58.
    Porter DL, Levine BL, Bunin N, Stadtmauer EA, Luger SM, Goldstein S, Loren A, Phillips J, Nasta S, Perl A, Schuster S, Tsai D, Sohal A, Veloso E, Emerson S, June CH (2006) A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood 107(4):1325–1331 Google Scholar
  59. 59.
    Thompson JA, Figlin RA, Sifri-Steele C, Berenson RJ, Frohlich MW (2003) A phase I trial of CD3/CD28-activated T cells (Xcellerated T cells) and interleukin-2 in patients with metastatic renal cell carcinoma. Clin Cancer Res 9(10Pt1):3562–3570 Google Scholar
  60. 60.
    Glode ML, Pantuck A, Higano CS, Meyer J, Hami L, Craig S, Berenson RJ, Frohlich MW (2004) A phase I/II trial of CD3/CD28 activated T cells (Xcellerated T Cells) in patients with hormone refractory prostate cancer. J Clin Oncol 22(Abstract):2549 Google Scholar
  61. 61.
    Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C, Macken C, Richman DD, Christopherson C, June CH, Lazar R, Broad DF, Jalali S, Hege KM (2002) A Phase II Randomized Study of HIV-Specific T-Cell Gene Therapy in Subjects with Undetectable Plasma Viremia on Combination Antiretroviral Therapy. Mol Ther 5:788–797 Google Scholar
  62. 62.
    Humeau LM, Binder GK, Lu X, Slepushkin V, Merling R, Echeagaray P, Pereira M, Slepushkina T, Barnett S, Dropulic LK, Carroll R, Levine BL, June CH, Dropulic B (2004) Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 9(6):902–913 Google Scholar
  63. 63.
    Taylor PA, Panoskaltsis-Mortari A, Swedin JM, Lucas PJ, Gress RE, Levine BL, June CH, Serody JS, Blazar BR (2004) L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 104(12):3804–3812 Google Scholar
  64. 64.
    Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA (2004) In Vitro-expanded Antigen-specific Regulatory T Cells Suppress Autoimmune Diabetes. J Exp Med 199:1455–1465 Google Scholar
  65. 65.
    Trenado A, Sudres M, Tang Q, Maury S, Charlotte F, Gregoire S, Bonyhadi M, Klatzmann D, Salomon BL, Cohen JL (2006) Ex vivo-expanded CD4+CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenicT cells. J Immunol 176(2):1266–1273 Google Scholar
  66. 66.
    Fowler D, Hou J, Foley J, Hakim F, Odom J, Castro K, Carter C, Read E, Gea-Banacloche J, Kasten-Sportes C, Kwak L, Wilson W, Levine B, June C, Gress R, Bishop M (2002) Phase I clinical trial of donor T-helper Type-2 cells after immunoablative, reduced intensity allogeneic PBSC transplant. Cytotherapy 4:429–430 Google Scholar
  67. 67.
    Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L, Veloso E, Zheng Z, Westphal S, Mair R, Chi N, Ratterree B, Pochran MF, Natt S, Hinkle J, Sickles C, Sohal A, Ruehle K, Lynch C, Zhang L, Porter DL, Luger S, Guo C, Fang HB, Blackwelder W, Hankey K, Mann D, Edelman R, Frasch C, Levine BL, Cross A, June CH (2005) Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 11(11):1162–1163 Google Scholar
  68. 68.
    Kipps TJ, Castro JE, Wierda W, Keating MJ, Bole J, Meyer J, Roehrs H, Bouchard L, Yuan V, Chana H, Hami L, Bonyhadi M, Berenson RJ, Frohlich MW (2003) A phase I/II trial of Xcellerated T Cells in patients with Chronic Lymphocytic Leukemia (CLL). Blood 102(Abstract):370 Google Scholar
  69. 69.
    Castro JE, Wierda WG, Kipps TJ, Keating MJ, Bole J, Anderson B, Meyer J, Bonyhadi M, Berenson RJ, Frohlich MW (2003) A phase I/II trial of Xcellerated T Cells in patients with Chronic Lymphocytic Leukemia. Blood 104(Abstract):2508 Google Scholar
  70. 70.
    Colucci S, Brunetti G, Rizzi R, Zonno A, Mori G, Colaianni G, Del Prete D, Faccio R, Liso A, Capalbo S, Liso V, Zallone A, Grano M (2004) T cells support osteoclastogenesis in an in vitro model derived from human multiple myleloma bone disease: the role of the OPG/TRAIL interaction. Blood 104:3722–3730 Google Scholar
  71. 71.
    Slager EH, van der Minne CE, Kruse M, Krueger DD, Griffioen M, Osanto S (2004) Identification of multiple HLA-DR-restricted epitopes of the tumor associated antigen CAMEL by CD4+ Th1/Th2 lymphocytes. J Immunol 172:5095–5102 Google Scholar
  72. 72.
    Holm AM, Aukrust P, Aandahl EM, Muller F, Tasken K, Froland SS (2003) Impaired secretion of IL-10 by T cells from patients with common variable immunodeficiency-involvement of protein kinase A type I. J Immunol 170:5772-5777 Google Scholar
  73. 73.
    Dardalhon V, Jaleco S, Rebouissou C, Ferrand C, Skander N, Swainson L, Tiberghien P, Spits H, Noraz N, Taylor N (2000) Highly efficient gene transfer in naive human T cells with a murine leukemia virus based vector. Blood 96:885-893 Google Scholar
  74. 74.
    Aasheim HC, Delabie J, Finne EF (2005) Ephrin-A1 binding to CD4+ T lymphocytes stimulates migration and induces tyrosine phosphorylation of PYK2. Blood 105(7):2869–2876 Google Scholar
  75. 75.
    Koh KP, Wang Y, Yi T, Shiao SL, Lorber MI, Sessa WC, Tellides G, Pober JS (2004) T cell-mediated vascular dysfunction of human allografts results from IFN-γ dysregulation of NO synthase. J Clin Investigation 114:846–856 Google Scholar
  76. 76.
    Ranjbar S, Ly N, Thim S, Reynes JM, Goldfeld AE (2004) Mycobacterium tuberculosis recall antigens suppress HIV-1 replication in anergic donor cells via CD8+ T cell expansion and increased IL-10 levels. J Immunol 172(3):1953–1959 Google Scholar
  77. 77.
    Zhang R, Fichtenbaum CJ, Hildeman DA, Lifso JD, Chougnet C (2004) CD40 Ligand Dysregulation in HIV Infection: HIV Glycoprotein 120 Inhibits Signaling Cascades Upstream of CD40 Ligand Transcription. J Immunol 172:2678–2686 Google Scholar
  78. 78.
    Sharma P, Gnjatic S, Jungbluth AA, Williamson B, Herr H, Stockert E, Dalbagni G, Machele Donat S, Reuter VE, Santiago D, Chen YT, Bajorin DF, Ritter G, Old LJ (2003) Frequency of NY-ESO-1 and LAGE-1 expression in bladder cancer and evidence of a new NY-ESO-1 T-cell epitope in a patient with bladder cancer. Cancer Immun 3:19 Google Scholar
  79. 79.
    Sloan D, Zahariadis G, Posavad CM, Pate NT, Kussick SJ, Jerome KR (2003) CTL are inactivated by herpes simplex virus-infected cells expressing a viral protein kinase. J Immunol 171:6733–6741 Google Scholar
  80. 80.
    Qiuping Z, Qun L, Chunsong H, Xiaolian Z, Baojun H, Mingzhen Y, Chengming L (2003) Selectively Increased Expression and Functions of Chemokine Receptor CCR9 on CD4− T Cells from Patients with T-Cell Lineage Acute Lymphocytic Leukemia 1. Cancer Res 63:6469–6477 Google Scholar
  81. 81.
    Lundi S, Johansson C, Svennerholm AM (2002) Oral Immunization with a Salmonella enterica Serovar Typhi Vaccine Induces Specific Circulating Mucosa-Homing CD4+ and CD8+ T Cells in Humans. Infect Immunity 70(10):5622–5627 Google Scholar
  82. 82.
    Takedatsu H, Shichijo S, Katagiri K, Sawamizu H, Sata M, Itoh K (2004) Identification of peptide vaccine candidates sharing among HLA-A3+, -A11+, -A31+ and -A33+ cancer patients. Clin Cancer Res 10:1112–1120 Google Scholar
  83. 83.
    Lundgren A, Suri-Payer E, Enarsson K, Svennerholm AM, Lundin BS (2002) Helicobacter pylori-specific CD4+CD25high regulatory T cells suppress memory T cell responses to H. pylori in infected individuals. Infect Immunity 71:1755–1762 Google Scholar
  84. 84.
    Wagar EJ, Cromwell MA, Shultz LD, Woda BA, Sullivan JL, Hesselton RAM, Dale L, Greiner DL (2002) Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid mice. J Immunol 165:518–527 Google Scholar
  85. 85.
    Piliero LM, Sanford AN, McDonald-McGinn DM, Zackai EH, Sullivan KE (2004) T-cell homeostasis in humans with thymic hypoplasia due to chromosome 22q11.2 deletion syndrome. Blood 103(3):1020–1025 Google Scholar
  86. 86.
    Arruvito L, Sanz M, Banham AH, Fainboim L (2007) Expansion of CD4+CD25+and FOXP3+ Regulatory T Cells during the Follicular Phase of the Menstrual Cycle: Implications for Human Reproduction. J Immunol 178:2572–2578 Google Scholar
  87. 87.
    Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F,Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109(2):632–642 Google Scholar
  88. 88.
    Wing K, Larsson P, Sandström K, Lundin SB, Suri-Payer E, Rudin A (2005) CD4+CD25+FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunology 115(4):516–525 Google Scholar
  89. 89.
    Jiang S, Camara N, Lombardi G, Lechler RI (2003) Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood 102:2180–2186 Google Scholar
  90. 90.
    Satoguina JS, Weyand E, Larbi J, Hoerauf A (2005) T Regulatory-1 Cells Induce IgG4 Production by B Cells: Role of IL-10. J Immunol 174:4718–4726 Google Scholar
  91. 91.
    Rice JS, Newman J, Wang C, Michael DJ, Diamond B (2005) Receptor editing in peripheral B cell tolerance. PNAS 102(5):1608–1613 Google Scholar
  92. 92.
    Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S, Leone G, Efremov DG (2005) Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood 105(12):4820–4827 Google Scholar
  93. 93.
    Laurenti L, Petlickovski A, Rumi C, Gobessi S, Piccioni P, Tarnani M, Puggioni P, Marietti S, Sica S, Leone G, Efremov DG (2005) Comparison of ZAP-70/Syk mRNA levels with immunoglobulin heavy-chain gene mutation status and disease progression in chronic lymphocytic leukemia. Haematologica 90:1533–1540 Google Scholar
  94. 94.
    Imadome K, Shirakata M, Shimizu N, Nonoyama S, Yamanashi Y (2003) CD40 ligand is a critical effector of Epstein–Barr virus in host cell survival and transformation. PNAS 100:7836–7840 Google Scholar
  95. 95.
    Mulder A, Eijsink C, Kardol MJ, Franke-van Dijk ME, van der Burg SH, Kester M, Doxiadis II, Claas FH (2003) Identification, isolation and culture of HLAA2-specific B lymphocytes using MHC Class I tetramers. J Immunol 171:6599–6603 Google Scholar
  96. 96.
    Rasmussen AM, Smeland E, Erikstein BK, Caignault L, Funderud S (1992) A new method for detachment of Dynabeads from positively selected B lymphocytes. J Immunol Meth 146:195–202 Google Scholar
  97. 97.
    Grund EM, Spyropoulos DD, Watson DK, Muise-Helmericks RC (2005) IL-2 and IL-15 regulate ETS1 expression via ERK1/2 and MNK1 in human NK cells. J Biol Chem 280:4772–4778 Google Scholar
  98. 98.
    Kai S, Goto S, Tahara K, Sasaki A, Tone S, Kitano S (2004) Indoleamine 2,3-dioxygenase is necessary for cytolytic activity of natural killer cells. Scand J Immunol 59:177–182 Google Scholar
  99. 99.
    Igarashi T, Wynberg J, Srinivasan R, Becknell B, McCoy JP Jr, Takahashi Y, Suffredini DA, Linehan WM, Caligiuri MA, Childs RW (2004) Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 104:170–177 Google Scholar
  100. 100.
    Kai S, Goto S, Tahara K, Sasaki A, Kawano K, Kitano S (2003) Inhibition of indoleamine 2,3-dioxygenase suppresses NK cell activity and accelerates tumor growth. J Exp Ther Oncol 3(6):336–345 Google Scholar
  101. 101.
    Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, Yamamura T (2003) Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 15(2):279–288 Google Scholar
  102. 102.
    D'Ettore G, Forcina G, Andreotti M, Sarmati L, Palmisano L, Andreoni M, Vella S, Mastroianni CM, Vullo V (2004) Interleukin-15 production by monocyte-derived dendritic cells and T cell proliferation in HIV-infected patients with discordant response to highly active antiretroviral therapy. Clin Exp Immunol 135:280–285 Google Scholar
  103. 103.
    Yu Q, Kovacs C, Yue FY, Ostrowski MA (2004) The role of the p38 mitogenactivated protein kinase, extracellular signalrelated kinase and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J Immunol 172:6047–6056 Google Scholar
  104. 104.
    Li LQ, Liu D, Hutt-Fletcher L, Morgan A, Masucci MG, Levitsky V (2002) Epstein–Barr virus inhibits the development of dendritic cells by promoting apoptosis of their monocyte precursors in the presence of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood 99:3725–3734 Google Scholar
  105. 105.
    Jahnsen FL, Strickland DH, Thomas JA, Tobagus IT, Napoli S, Zosky GR, Turner DJ, Sly PD, Stumbles PA, Holt PG (2006) Accelerated Antigen Sampling and Transport by Airway Mucosal Dendritic Cells following Inhalation of a Bacterial Stimulus. J Immunol 177:5861–5867 Google Scholar
  106. 106.
    Palucka AK, Laupeze B, Aspord C, Saito H, Jego G, Fay J, Paczesny S, Pascual V, Banchereau J (2005) Immunotherapy via dendritic cells. Adv Exp Med Biol 560:105–114 CrossRefGoogle Scholar
  107. 107.
    Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2(3):151–161 Google Scholar
  108. 108.
    Weissman D, Houping N, Scales D, Dude A, Capodici J, McGibney K, Abdool A, Isaacs SN, Cannon G, Kariko K (2000) HIV Gag mRNA Transfection of Dendritic Cells (DC) Delivers Encoded Antigen to MHC Class I and II Molecules, Causes DC Maturation, and Induces a Potent Human In Vitro Primary Immune Response. J Immunol 165:4710–4717 Google Scholar
  109. 109.
    Chia-Chun J, Wright A, Punnonen J (2000) Monocyte-Derived CD1a+ and CD1a- Dendritic Cell Subsets Differ in Their Cytokine Production Profiles, Susceptibilities to Transfection, and Capacities to Direct Th Cell Differentiation. J Immunol 165:3584–3591 Google Scholar
  110. 110.
    Moharita AL, Taborga M, Corcoran KE, Bryan M, Patel PS, Rameshwar P (2006) SDF-1alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood 108(10):3245–3252 Google Scholar
  111. 111.
    Canque B, Camus S, Dalloul A, Kahn E, Yagello M, Dezutter-Dambuyant C, Schmitt D, Schmitt C, Gluckman JC (2000) Characterization of dendritic cell differentiation pathways from cord blood CD34(+)CD7(+)CD45RA(+) hematopoietic progenitor cells. Blood 96(12):3748–3756 Google Scholar
  112. 112.
    Ueda T, Yoshino H, Kobayashi K, Kawahata M, Ebihara Y, Ito M, Asano S, Nakahata T, Tsuji K (2000) Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice. Stem Cells 18(3):204–213 Google Scholar
  113. 113.
    Egeland T, Gaudernack G (1994) CD34 The Gateway to the Study of Lymphohematopoietic Progenitor and Leukemic Cells. The Immunologist 2:65–70 Google Scholar
  114. 114.
    Tong J, Hoffman R, Siena S, Srour EF, Bregini M, Gianni AM (1994) Characterization and quantitation of primitive hematopoietic progenitor cells present in peripheral blood autografts. Exp Hematol 22(10):1016–1024 Google Scholar
  115. 115.
    Sutherland DR, Keating A (1992) The CD34 Antigen: Structure, Biology and Potential Clinical Applications. J Haematother 1:115–129 Google Scholar
  116. 116.
    Cao TM, Shizuru JA, Wong RM, Sheehan K, Laport GG, Stockerl-Goldstein KE, Johnston LJ, Stuart MJ, Grumet FC, Negrin RS, Lowsky R (2005) Engraftment and survival following reducedintensity allogeneic peripheral blood hematopoietic cell transplantation is affected by CD8+ T cell dose. Blood 105:2300–2306 Google Scholar
  117. 117.
    Beckhove P, Feuerer M, Dolenc M, Schuetz F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P, Bastert G, Schirrmacher V, Umansky V (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76 Google Scholar
  118. 118.
    Thickett DR, Armstrong L, Millar AB (2002) A role for vascular endothelial growth factor in acute and resolving lung injury. Am J Respir Crit Care Med 166(10):1332–1337 Google Scholar
  119. 119.
    Murray J, Ward C, O'Flaherty JT, Dransfield I, Haslett C, Chilvers ER, Rossi AG (2003) Role of leukotrienes in the regulation of human granulocyte behaviour: dissociation between agonist-induced activation and retardation of apoptosis. Br J Pharmacol 139(2):388–398 Google Scholar
  120. 120.
    Blom M, Tool AT, Mul FP, Knol EF, Roos D, Verhoeven AJ (1995) Eosinophils isolated with two different methods show different characteristics of activation. J Immunol Meth 178:183–193 Google Scholar
  121. 121.
    Bach MK, Brashler JR, Sanders ME (1990) Preparation of large numbers of highly purified normodense human eosinophils from leukapheresis. J Immunol Meth 130:277–281 Google Scholar
  122. 122.
    Gibbs BF, Noll T, Falcone FH, Haas H, Vollmer E, Vollrath I, Wolff HH, Amon U (1997) A three-step procedure for the purification of human basophils from buffy coat blood. Inflamm Res 46(4):137–142 Google Scholar
  123. 123.
    de Belder A, Radomski M, Hancock V, Brown A, Moncada S, Martin J (1995) Megakaryocytes from patients with coronary atherosclerosis express the inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 15(5):637–641 Google Scholar
  124. 124.
    Pasquet JM, Dachary-Prigent J, Nurden AT (1998) Microvesicle release is associated with extensive protein tyrosine dephosphorylation in platelets stimulated by A23187 or a mixture of thrombin and collagen. Biochem J 333(Pt3):591–599 Google Scholar
  125. 125.
    Sanmugalingam D, Wardlaw AJ, Bradding P (2000) Adhesion of human lung mast cells to bronchial epithelium: evidence for a novel carbohydrate-mediated mechanism. J Leukoc Biol 68(1):38–46 Google Scholar
  126. 126.
    Hewett PW, Murray JC (1993) Immunomagnetic purification of human microvessel endothelial cells using Dynabeads coated with monoclonal antibodies to PECAM-1. Eur J Cell Biol 62:451–454 Google Scholar
  127. 127.
    Hewett PW, Murray JC (1993) Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell Dev Biol Anim 29A(11):823–830 Google Scholar
  128. 128.
    Hewett PW, Murray JC, Price EA, Watts ME, Woodcock M (1993) Isolation and characterization of microvessel endothelial cells from human mammary adipose tissue. In Vitro Cell Dev Biol Anim 29A(4):325–331 Google Scholar
  129. 129.
    Lalor PF, Edwards S, McNab G, Salmi M, Jalkanen S, Adams DH (2002) Vascular Adhesion Protein-1 Mediates Adhesion and Transmigration of Lymphocytes on Human Hepatic Endothelial Cells. J Immunol 169:983–992 Google Scholar
  130. 130.
    Rigolin GM, Fraulini C, Ciccone M, Mauro E, Bugli AM, De Angeli C, Negrini M,Cuneo A, Castoldi G (2006) Neoplastic circulating endothelial cells in multiple myeloma with 13q14 deletion. Blood 107(6):2531–2535 Google Scholar
  131. 131.
    Woywodt A, Blann AD, Kirsch T, Erdbrugger U, Banzet N, Haubitz M, Dignat-George F (2006) Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. Thromb Haemost 4(3):671–677 Google Scholar
  132. 132.
    Woywodt A, Goldberg C, Scheer J, Regelsberger H, Haller H, Haubitz M (2004). An improved assay for enumeration of circulating endothelial cells. Ann Hematol 83(8):491–494 Google Scholar
  133. 133.
    Koumas L, King AE, Critchley HO, Kelly RW, Phipps RP (2001) Fibroblast heterogeneity: existence of functionally distinct Thy 1(+) and Thy 1(-) human female reproductive tract fibroblasts. Am J Pathol 159(3):925–935 Google Scholar
  134. 134.
    Fernandez-Shaw S, Shorter SC, Naish CE, Barlow DH, Starkey PM (1992) Isolation and purification of human endometrial stromal and glandular cells using immunomagnetic microspheres. Hum Reprod 7(2):156–161 Google Scholar
  135. 135.
    Werther K, Normark M, Hansen BF, Brunner N, Nielsen HJ (2000) The use of the CELLection kit in the isolation of carcinoma cells form mononuclear cell suspensions. J Immunol Meth 238(1–2):133–141 Google Scholar
  136. 136.
    Kielhorn E, Schofield K, Rimm DL (2002) Use of magnetic enrichment for detection of carcinoma cells in fluid specimens. Cancer 94(1):205–211 Google Scholar
  137. 137.
    Hardingham JE, Kotasek D, Sage RE, Eaton MC, Pascoe VH, Dobrovic A (1995) Detection of circulating tumour cells in colorectal cancer by immunobead-PCR is a sensitive prognostic marker for relapse of disease. Molec Med 1(7):789–794 Google Scholar
  138. 138.
    de Cremoux P, Extra JM, Denis MG, Pierga JY, Bourstyn E, Nos C, Clough KB, Boudou E, Martin EC, Muller A, Pouillart P, Magdelenat H (2000) Detection of MUC1-expressing mammary carcinoma cells in the peripheral blood of breast cancer patient by real-time polymerase chain reaction. Clin Cancer Res 6(8):3117–3122 Google Scholar
  139. 139.
    Okabe M, Matzno S, Nagira M, Ying X, Kohama Y, Mimura T (1992) Collection of acrosome-reacted human sperm using monoclonal antibody-coated paramagnetic beads. Mol Reprod Dev 32(4):389–393 Google Scholar
  140. 140.
    Pederson L, Kremer M, Judd J, Pascoe D, Spelsberg TC, Riggs BL, Oursler MJ (1999) Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc Natl Acad Sci 96(2):505–510 Google Scholar
  141. 141.
    Aukrust P, Muller F, Svardal AM, Ueland T, Berge RK, Froland SS (2003) Disturbed glutathione metabolism and decreased antioxidant levels in human immunodeficiency virus-infected patients during highly active antiretroviral therapy–potential immunomodulatory effects of antioxidants. J Infect Dis 188(2):232–238 Google Scholar
  142. 142.
    Xu Z, Butfiloski EJ, Sobel ES, Morel L (2004) Mechanisms of peritoneal B-1A cells accumulation induced by murine lupus susceptibility locus Sle2. J Immunol 173:6050–6058 Google Scholar
  143. 143.
    Metwali A, Blum AM, Elliott DE, Setiawan T, Weinstock JV (2004) Cutting Edge: Hemokinin has Substance P-like function and expression in inflammation. J Immunol 172:6528–6532 Google Scholar
  144. 144.
    Kamath AT, Sheasby CE, Tough DF (2005) Dendritic Cells and NK Cells Stimulate Bystander T Cell Activation in Response to TLR Agonists through Secretion of IFN-αβ and IFN-γ. J Immunol 174:767–776 Google Scholar
  145. 145.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827 Google Scholar
  146. 146.
    Chandra AP, Ouyang L, Yi S, Wong JK, Ha H, Walters SN, Patel AT, Stokes R, Jardine M, Hawthorne WJ, O'Connell PJ (2007) Chemokine and toll-like receptor signaling in macrophage mediated islet xenograft rejection. Xenotransplantation 14(1):48–59 Google Scholar
  147. 147.
    Henderson WR Jr, Chi EY, Bollinger JG, Tien YT, Ye X, Castelli L, Rubtsov YP, Singer AG, Chiang GK, Nevalainen T, Rudensky AY, Gelb MH (2007) Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J Exp Med 204(4):865–877 Google Scholar
  148. 148.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132 Google Scholar
  149. 149.
    Anderson G, Jenkinson EJ, Moore NC, Owen JJ (1993) MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362:70–73 Google Scholar
  150. 150.
    von Garnier C, Filgueira L, Wikstrom M, Smith M, Thomas JA, Strickland DH, Holt PG, Stumbles PA (2005) Anatomical Location Determines the Distribution and Function of Dendritic Cells and Other APCs in the Respiratory Tract. J Immunol 175:1609–1618 Google Scholar
  151. 151.
    Puliaev R, Nguyen P, Finkelman FD, Via CS (2004) Differential requirements for IFN-g in CTL maturation in acute murine graft-versus host disease. J Immunol 173:910–919 Google Scholar
  152. 152.
    Gorbachev AV, Fairchild RL (2004) CD40 engagement enhances antigen-presenting Langerhans cell priming of IFN-gproducing CD4+ and CD8+ T cells independently of Il-12. J Immunol 173(4):2443–2452 Google Scholar
  153. 153.
    Rus V, Nguyen V, Puliaev R, Puliaeva I, Zernetkina V, Luzina I, Papadimitriou JC, Via CS (2007) T Cell TRAIL Promotes Murine Lupus by Sustaining Effector CD4 Th Cell Numbers and by Inhibiting CD8 CTL Activity. J Immunol 178:3962–3972 Google Scholar
  154. 154.
    Roan NR, Gierahn TM, Higgins DE, Starnbach MN (2006) Monitoring the T cell response to genital tract infection. PNAS 103(32):12069–12074 Google Scholar
  155. 155.
    Kutzler MA, Robinson TM, Chattergoon MA, Choo DK, Choo AY, Choe PY, Ramanathan MP, Parkinson R, Kudchodkar S, Tamura Y, Sidhu M, Roopchand V, Kim JJ, Pavlakis GN, Felber BK, Waldmann TA, Boyer JD, Weiner DB (2005) Coimmunization with an Optimized IL-15 Plasmid Results in Enhanced Function and Longevity of CD8 T Cells That Are Partially Independent of CD4 T Cell Help. J Immunol 175(1):112–123 Google Scholar
  156. 156.
    Stephens LA, Gray D, Anderton SM (2005) CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity. PNAS 102(48):17418–17423 Google Scholar
  157. 157.
    Giorda E, Sibilio L, Martayan A, Feriotto G, Bianchi N, Mischiati C, Di Rosa F, Pozzi L, Gambari R, Giacomini P (2005) Modular usage of the HLA-DRA promoter in extra-hematopoietic and hematopoietic cell types of transgenic mice. FEBS J 272:3214–3226 Google Scholar
  158. 158.
    Zeytin HE, Patel AC, Rogers CJ, Canter D, Hursting SD, Schlom J, Greiner JW (2004) Combination of a Poxvirus-Based Vaccine with a Cyclooxygenase-2 Inhibitor (Celecoxib) Elicits anti-tumor Immunity and Long-Term Survival in CEA.Tg/MIN Mice. Cancer Res 64:3668–3678 Google Scholar
  159. 159.
    O'Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell-and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7(5):507–516 Google Scholar
  160. 160.
    Vremec D, Pooley J, Hochrein H, Wu L, Shortman K (2000) CD4 and CD8 Expression by Dendritic Cell Subtypes in Mouse Thymus and Spleen. J Immunol 164:2978–2986 Google Scholar
  161. 161.
    Martinez del Hoyo G, Lopez-Bravo M, Metharom P, Ardavin C, Aucouturier P (2006) Prion Protein Expression by Mouse Dendritic Cells Is Restricted to the Nonplasmacytoid Subsets and Correlates with the Maturation State. J Immunol 177:6137–6142 Google Scholar
  162. 162.
    Rui T, Cepinskas G, Feng Q, Ho YS, Kvietys PR (2001) Cardiac myocytes exposed to anoxia-reoxygenation promote neutrophil transendothelial migration. Am J Physiol Heart Circ Physiol 281(1):H440–447 Google Scholar
  163. 163.
    Balconi G, Spagnuolo R, Dejana E (2000) Development of endothelial cell lines from embryonic stem cells: A tool for studying genetically manipulated endothelial cells in vitro. Arterioscler Thromb Vasc Biol 20(6):1443-1451 Google Scholar
  164. 164.
    Camerer E, Kataoka H, Kahn M, Lease K, Coughlin SR (2002) Genetic evidence that protease-activated receptors mediate factor Xa signaling in endothelial cells. J Biol Chem 277(18):16081–1608 Google Scholar
  165. 165.
    Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res 91(1):70–76 Google Scholar
  166. 166.
    Galvez BG, Genis L, Matias-Roman S, Oblander SA, Tryggvason K, Apte SS, Arroyo AG (2005) Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/ccl2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem 280(2):1292–1298 Google Scholar
  167. 167.
    Ross R, Ross XL, Ghadially H, Lahr T, Schwing J, Knop J, Reske-Kunz AB (1999) Mouse langerhans cells differentially express an activated T cell-attracting CC chemokine. J Invest Dermatol 113(6):99–998 Google Scholar
  168. 168.
    Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S, Hoshida Y, Nakazawa T, Harada Y, Tatsumi N, Tsuboi A, Kawakami M, Oka Y, Oji Y, Aozasa K, Kawase I, Sugiyama H (2006) AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood 107(8):3303–3312 Google Scholar
  169. 169.
    Raslova H, Baccini V, Loussaief L, Comba B, Larghero J, Debili N, Vainchenker W (2006) Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation. Blood 107(6):2303–2310 Google Scholar
  170. 170.
    Ghinassi B, Sanchez M, Martelli F, Amabile G, Vannucchi AM, Migliaccio G, Orkin SH, Migliaccio AR (2007) The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood 109(4):1460–1471 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Axl A. Neurauter
    • 1
  • Mark Bonyhadi
    • 1
  • Eli Lien
    • 1
  • Lars Nøkleby
    • 1
  • Erik Ruud
    • 1
  • Stephanie Camacho
    • 1
  • Tanja Aarvak
    • 1
  1. 1.Invitrogen Dynal ASOsloNorway

Personalised recommendations