Advertisement

Biofuels pp 1-40 | Cite as

Fueling Industrial Biotechnology Growth with Bioethanol

  • José Manuel Otero
  • Gianni Panagiotou
  • Lisbeth Olsson
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 108)

Abstract

Industrial biotechnology is the conversion of biomass via biocatalysis, microbial fermentation, or cell culture to produce chemicals, materials, and/or energy. Industrial biotechnology processes aim to be cost-competitive, environmentally favorable, and self-sustaining compared to their petrochemical equivalents. Common to all processes for the production of energy, commodity, added value, or fine chemicals is that raw materials comprise the most significant cost fraction, particularly as operating efficiencies increase through practice and improving technologies. Today, crude petroleum represents the dominant raw material for the energy and chemical sectors worldwide. Within the last 5 years petroleum prices, stability, and supply have increased, decreased, and been threatened, respectively, driving a renewed interest across academic, government, and corporate centers to utilize biomass as an alternative raw material. Specifically, bio-based ethanol as an alternative biofuel has emerged as the single largest biotechnology commodity, with close to 46 billion L produced worldwide in 2005. Bioethanol is a leading example of how systems biology tools have significantly enhanced metabolic engineering, inverse metabolic engineering, and protein and enzyme engineering strategies. This enhancement stems from method development for measurement, analysis, and data integration of functional genomics, including the transcriptome, proteome, metabolome, and fluxome. This review will show that future industrial biotechnology process development will benefit tremendously from the precedent set by bioethanol – that enabling technologies (e.g., systems biology tools) coupled with favorable economic and socio-political driving forces do yield profitable, sustainable, and environmentally responsible processes. Biofuel will continue to be the keystone of any industrial biotechnology-based economy whereby biorefineries leverage common raw materials and unit operations to integrate diverse processes to produce demand-driven product portfolios.

Bioethanol Biofuels Biorefinery Metabolic engineering Systems biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pass F (1981) J Am Acad Dermatol 4:476 CrossRefGoogle Scholar
  2. 2.
    Ferrandiz-Garcia F (1982) Rev Esp Fisiol 38:353 Google Scholar
  3. 3.
    Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J (2005) Adv Biochem Eng Biotechnol 100:19 Google Scholar
  4. 4.
    Hirche C (2006) Trend report no. 16: Industrial Biotechnology. Presented at ACHEMA 2006, Frankfurt am Main, Germany. Available at http://www.achema.de/Trendreports.html , last visited: 10 July 2007
  5. 5.
    Gavrilescu M, Chisti Y (2005) Biotech Adv 23:471 Google Scholar
  6. 6.
    Dien BS, Cotta MA, Jeffries TW (2003) Appl Microbiol Biotechnol 63:258 Google Scholar
  7. 7.
    Russo S, Berkovitz S-TR, Poli G (1995) J Environ Pathol Toxicol Oncol 14:133 Google Scholar
  8. 8.
    Adrio JL, Demain AL (2006) FEMS Microbiol Rev 30:187 Google Scholar
  9. 9.
    Smedsgaard J, Nielsen J (2005) J Exp Bot 56:273 Google Scholar
  10. 10.
    Hong EL, Balakrishnan R, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Livstone MS, Nash R, Oughtred R, Park J, Skrzypek M, Starr B, Theesfeld CL, Andrada R, Binkley G, Dong Q, Lane CD, Hitz BC, Miyasato S, Schroeder M, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM (2006) Saccharomyces Genome Database http://www.yeastgenome.org/ , last visited: 10 July 2007
  11. 11.
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Science 274:563 Google Scholar
  12. 12.
    DeRisi JL, Iver VR, Brown PO (1997) Science 278:680 Google Scholar
  13. 13.
    Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) Mol Cell 2:65 Google Scholar
  14. 14.
    Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome Res 13:244 Google Scholar
  15. 15.
    Famili I, Förster J, Fu P, Nielsen J, Palsson BØ (2003) Proc Natl Acad Sci USA 100:13134 Google Scholar
  16. 16.
    Huang HT (1964) Prog Ind Microbiol 5:55 Google Scholar
  17. 17.
    Sahm H, Eggeling L, de Graad AA (2000) Biol Chem 381:899 Google Scholar
  18. 18.
    Chatterjee M, Chatterjee SP (1997) Hindustan Antibiot Bull 39:20 Google Scholar
  19. 19.
    Koffas M, Stephanopoulos G (2005) Curr Opin Biotechnol 16:361 Google Scholar
  20. 20.
    Lein J (1986) The Panlabs penicillin strain improvement program. In: Vanek Z, Hosta'lek Z (eds) Overproduction of microbial metabolites. Butterworths, Boston, p 105 Google Scholar
  21. 21.
    Thykaer J, Nielsen J (2003) Metab Eng 5:56 Google Scholar
  22. 22.
    Bresmus C, Hermann U, Bringer-Meyer S, Sahm H (2006) J Biotechnol 124:196 Google Scholar
  23. 23.
    Vemuri GN, Aristidou AA (2005) Microbiol Mol Biol Rev 69:197 Google Scholar
  24. 24.
    Patil KR, Akesson M, Nielsen J (2004) Curr Opin Biotechnol 15:64 Google Scholar
  25. 25.
    Stephanopoulos G (1999) Metab Eng 1:1 Google Scholar
  26. 26.
    Bro C, Nielsen J (2004) Metab Eng 6:204 Google Scholar
  27. 27.
    Lynd LR, Wyman CE, Gerngross TU (1999) Biotechnol Prog 15:777 Google Scholar
  28. 28.
    Short PL (2006) C&EN 84:13 Google Scholar
  29. 29.
    Dupont (2005) Energy impact and implications for pricing. DuPont Economist's Office press release. Available at http://www2.dupont.com/Media_Center/en_US/assets/downloads/pdf/Newsletter_Economist_Office.pdf , last visited: 10 July 2007
  30. 30.
    Corporate Report (2005) The Dow Chemical Company. Available at http://www.dow.com/corporatereport/2005/ , last visited: 10 July 2007
  31. 31.
    Financial Report (2005) BASF. Available at http://www.berichte.basf.de/en/service/archiv/?id=MZa1eAkIYbcp2pr , last visited: 10 July 2007
  32. 32.
    Energy Information Administration (2006) Official energy statistics from the US government. US Department of Energy. Available at http://www.eia.doe.gov , last visited: 10 July 2007
  33. 33.
    D'Aquino R (2006) Chem Engin Prog 102:12 Google Scholar
  34. 34.
    Energy Information Administration (2006) Petroleum marketing annual 2005. US Department of Energy. Available at http://www.eia.doe.gov/pub/oil_gas/petroleum/data_publications/petroleum_marketing_annual/historical/2005/pma_2005.html , last visited: 10 July 2007
  35. 35.
    Central Intelligence Agency (2006) The World Fact Book. CIA, US. Available at https://www.cia.gov/cia/publications/factbook/ , last visited: 10 July 2007
  36. 36.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R (2006) Science 311:484 Google Scholar
  37. 37.
    Herrera S (2004) Nat Biotechnol 22:671 Google Scholar
  38. 38.
    Schubert C (2006) Nat Biotechnol 24:777 Google Scholar
  39. 39.
    The Royal Dutch Shell Company (2005) Annual report. Available at http://www.shell.com , last visited: 10 July 2007
  40. 40.
    DuPont (2005) Annual review. Available at http://www.dupont.com , last visited: 10 July 2007
  41. 41.
    Total (2005) Global report. Available at http://www.total.com , last visited: 10 July 2007
  42. 42.
    Buarque de Hollanda J, Poole A (2001) Sugarcane as an energy source in Brazil. Institute Nacional de Eficiéncia Energética. Available at http://www.inee.org.br/down_loads/about/SUGARCANE&ENERGY.pdf , last visited: 10 July 2007
  43. 43.
    Renewable Fuels Association (2006) From niche to nation: ethanol industry outlook 2006. RFA. Available at http://www.ethanolrfa.org/objects/pdf/outlook/outlook_2006.pdf , last visited: 10 July 2007
  44. 44.
    Bailey BK (1996) Performance of ethanol was a transportation fuel. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington DC, p 37 Google Scholar
  45. 45.
    Bayraktar H (2005) Renewable Energy 30:1733 Google Scholar
  46. 46.
    Hseih W, Chen R, Wu T, Lin T (2002) Atmospher Environ 36:403 Google Scholar
  47. 47.
    Wu C-W, Chen R-H, Pu J-Y, Lin T-H (2004) Atmospher Environ 38:7093 Google Scholar
  48. 48.
    Yücesu HS, Topgül T, Çinar C, Melih O (2006) Appl Thermal Engin 26:2272 Google Scholar
  49. 49.
    Schmidt TC, Schirmer M, Wei H, Haderlein SB (2003) J Contam Hydrol 70:173 Google Scholar
  50. 50.
    Howd RA (2002) Int J Toxicol 21:389 Google Scholar
  51. 51.
    Williams PRD, Benton L, Sheehan PJ (2004) California Risk Ana 24:621 Google Scholar
  52. 52.
    EuropaBio (2006) Annual report 2006. Available at http://www.europabio.org , last visited: 10 July 2007
  53. 53.
    Biofuels Research Advisory Council (2006) Biofuels in the European Union: a vision for 2030 and beyond. BRAC. Available at http://ec.europa.eu/research/energy/pdf/draft_vision_report_en.pdf , last visited: 10 July 2007
  54. 54.
    Bohlmann GM, César MA (2006) Industrial Biotechnology 2:2 Google Scholar
  55. 55.
    Perlack RD, Write LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge, TN. Available at http://www.osti.gov/bridge , last visited: 10 July 2007
  56. 56.
    Gray KA, Zhao L, Emptage M (2006) Curr Opin Chem Biol 10:141 Google Scholar
  57. 57.
    Ideker T, Galitski T, Hood L (2001) Annu Rev Genomics Hum Genet 2:343 Google Scholar
  58. 58.
    Thiel K (2006) Nat Biotech 24:1055 Google Scholar
  59. 59.
    Patterson SD, Aebersold RH (2003) Nat Genet Suppl 33:311 Google Scholar
  60. 60.
    Stephanopoulos G (2002) Nat Biotechnol 20:707 Google Scholar
  61. 61.
    Oliver DJ, Nikolau B, Wurtele ES (2002) Met Eng 4:98 Google Scholar
  62. 62.
    Lee SY, Lee DY, Kim TY (2005) Trends Biotechnol 23:349 Google Scholar
  63. 63.
    Bro C, Nielsen J (2004) Met Eng 6:204 Google Scholar
  64. 64.
    Han M-J, Lee SY (2003) Proteomics 3:2317 Google Scholar
  65. 65.
    Hermann T (2004) Curr Opin Biotechnol 15:444 Google Scholar
  66. 66.
    Endy D, Brent R (2001) Nature 409:391 Google Scholar
  67. 67.
    Selinger DW, Wright MA, Church GM (2003) Trends Biotechnol 21:251 Google Scholar
  68. 68.
    Stelling J (2004) Curr Opin Microbiol 7:513 Google Scholar
  69. 69.
    Wiechert W (2002) J Biotechnol 94:37 Google Scholar
  70. 70.
    Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC (2006) Nucleic Acid Res 1:34 Google Scholar
  71. 71.
    Genomes Online Database (GOLD) (2006) http://www.genomesonline.org/ , last visited: 10 July 2007
  72. 72.
    Edwards JS, Ibarra RU, Palsson BØ (2001) Nature Biotechn 19:125 Google Scholar
  73. 73.
    Edwards JS, Palsson BØ (2000) Proc Natl Acad Sci USA 97:5528 Google Scholar
  74. 74.
    Duarte NC, Palsson BØ, Fu P (2004) BMC Genom 5:63 Google Scholar
  75. 75.
    Forster J, Famili I, Palsson BØ, Nielsen J (2003) OMICS 7:193 Google Scholar
  76. 76.
    Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Curr Opin Biotechnol 16:588 Google Scholar
  77. 77.
    Diener SE, Chellappan MK, Michell TK, Dunn-Coleman N, Ward M, Dean RA (2004) Fungal Genet Biol 41:1077 Google Scholar
  78. 78.
    Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfec TD, Englan GJ, Kelley AS, Meerman HJ, Michell T, Mitchinson H, Olivares HA, Teunissen PJM, Yao J, Ward M (2003) J Biol Chem 278:31988 Google Scholar
  79. 79.
    Sheir-Neiss G, Montenecourt BS (1984) Appl Microbiol Biotechnol 20:46 Google Scholar
  80. 80.
    Bansal AK (2005) Microb Cell Factories 4:19 Google Scholar
  81. 81.
    Hartl D, Jones EW (2005) Genetics: analysis of genes and genomes, 6th edn. Jones and Bartlett, Boston Google Scholar
  82. 82.
    Lynch MD, Gill RT, Stephanopoulos G (2004) Metab Eng 6:177 Google Scholar
  83. 83.
    Gill RT (2003) Curr Opin Biotechnol 14:484 Google Scholar
  84. 84.
    Wu J, Zhang N, Hayes A, Panoutsopoulou K, Oliver SG (2004) Proc Natl Acad Sci 101:3148 Google Scholar
  85. 85.
    Boer VM, de Winde JH, Pronk JT, Piper MD (2003) J Biol Chem 278:3265 Google Scholar
  86. 86.
    Phelps TJ, Palumbo AV, Beliaev AS (2002) Curr Opin Biotechnol 13:20 Google Scholar
  87. 87.
    Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Science 292:929 Google Scholar
  88. 88.
    Erasmus DJ, van der Me G, van Vuuren HJ (2003) FEMS Yeast Res 3:375 Google Scholar
  89. 89.
    DeRisi JL, Iyer VR, Brown PO (1997) Science 278:680 Google Scholar
  90. 90.
    Cakir T, Kirdar B, Ulgen KO (2004) Biotechnol Bioeng 86:251 Google Scholar
  91. 91.
    Patil KR, Nielsen J (2005) Proc Natl Acad Sci USA 102:2685 Google Scholar
  92. 92.
    Cakir T, Patil KR, Onsan Zi, Ulgen KO, Kirdar B, Nielsen J (2006) Mol Syst Biol 2:50 Google Scholar
  93. 93.
    Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Appl Environ Microbiol 70:2307 Google Scholar
  94. 94.
    Koffas M, Stephanopoulos G (2005) Curr Opin Biotechnol 16:361 Google Scholar
  95. 95.
    Wendisch VF, Bott M, Eikmanns BJ (2006) Curr Opin Microbiol 9:268 Google Scholar
  96. 96.
    Wendisch VF (2003) J Biotechnol 104:273 Google Scholar
  97. 97.
    Anderson NL, Matheson AD, Steiner S (2000) Curr Opin Biotechnol 11:408 Google Scholar
  98. 98.
    Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Biotech Gen Eng Rev 13:19 Google Scholar
  99. 99.
    Kolkman A, Slijper M, Heck AJR (2005) Trends Biotechnol 23:59 Google Scholar
  100. 100.
    Lee JW, Lee SY, Song H, Yoo J-S (2006) Proteomics 6:3550 Google Scholar
  101. 101.
    Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, Battersby JE, Champion KM (2004) Biotechnol Bioeng 85:463 Google Scholar
  102. 102.
    Han M-J, Jeong KJ, Yoo J-S, Lee Y (2003) Appl Environ Microbiol 69:5772 Google Scholar
  103. 103.
    Aldor IS, Krawitz DC, Forrest W, Chen C, Nishihara JC, Joly JC, Champion KM (2005) Appl Environm Microbiol 4:1717 Google Scholar
  104. 104.
    Ullrich B, Ushkaryov YA, Sudhof TC (1995) Neuron 14:497 Google Scholar
  105. 105.
    Han MJ, Yoon SS, Lee SY (2001) J Bacteriol 183:301 Google Scholar
  106. 106.
    Lee PC, Lee SY, Hong SH, Chang HN (2002) Appl Microbiol Biotechnol 56:663 Google Scholar
  107. 107.
    See SY, Park SJ, Lee Y, Lee SH (2005) Biotechnological processes for the production of monomers of subsequent chemical polymer synthesis. In: Steinbüchel A, Doi Y (eds) Biotechnology of biopolymers. Wiley-VCH, Germany, p 1081 Google Scholar
  108. 108.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass. Office of the Biomass Program. Available at http://www.nrel.gov/docs/fy04osti/35523.pdf , last visited 10 July 2007
  109. 109.
    Lin H, Bennett GN, San KY (2005) Metab Eng 7:116 Google Scholar
  110. 110.
    Song H, Lee SY (2006) Enz Microb Technol 39:352 Google Scholar
  111. 111.
    Kim P, Laivenieks M, Vieille C, Zeikus JG (2004) Appl Environ Microbiol 70:1238 Google Scholar
  112. 112.
    Zeikus JG, Jain M, Elankovan P (1999) App Microbiol Biotechn 51:545 Google Scholar
  113. 113.
    Salusjarvi L, Poutanen M, Pitkanen JP, Koivistoinen H, Aristidou A, Kalkkinen N, Ruohonen L, Pentilla M (2003) Yeast 20:295 Google Scholar
  114. 114.
    Olsson L, Jørgensen H, Krogh K, Roca C (2004) Bioethanol Production from Lignocellulose Material. In: Polysaccharides: Structural Diversity and Functional Versatility. Marcel Dekker, New York, p 957 Google Scholar
  115. 115.
    Lynd LR, Wyman C, Laser M, Johnson D, Landucci R (2002) Strategic Biorefinery Analysis: Analysis of Biorefineries, Subcontract Report NREL/SE-510-35578 Google Scholar
  116. 116.
    Lynd LR, Wyman C, Laser M, Johnson D, Landucci R (2002) Strategic Biorefinery Analysis: Review of Existing Biorefinery Examples, Subcontract Report NREL/SE-510-34895 Google Scholar
  117. 117.
    Smedsgaard J, Nielsen J (2005) J Experim Bot 56:273 Google Scholar
  118. 118.
    Kell DB (2004) Curr Opin Microbiol 7:296 Google Scholar
  119. 119.
    Tweeddale H, Notley-McRobb L, Ferenci T (1998) J Bacteriol 180:5109 Google Scholar
  120. 120.
    Trethewey RN, Krotzky AJ, Willmitzer L (1999) Curr Opin Plant Biotechnol 2:83 Google Scholar
  121. 121.
    Oksman-Caldentey KM, Saito K (2005) Curr Opin Biotechnol 16:174 Google Scholar
  122. 122.
    Harrigan GG, Goodacre R (eds) (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic, Boston Google Scholar
  123. 123.
    Park SJ, Lee SY, Cho J, Kim TY, Lee JW, Park JH, Han MJ (2005) Appl Microbiol Biotechnol 68:567 Google Scholar
  124. 124.
    Panagiotou G, Christakopoulos P, Villas-Boas SG, Olsson L (2005) Enz Microb Technol 36:100 Google Scholar
  125. 125.
    Panagiotou G, Christakopoulos P, Olsson L (2005) J Biotechnol 118:304 Google Scholar
  126. 126.
    Panagiotou G, Villas-Boas SG, Christakopoulos P, Nielsen J, Olsson L (2005) J Biotechnol 115:425 Google Scholar
  127. 127.
    Panagiotou G, Christakopoulos P, Olsson L (2005d) Enz Microb Technol 36:693 Google Scholar
  128. 128.
    Salminen JG, Streeter SO (1990) Biochim Biophys Acta 1035:257 Google Scholar
  129. 129.
    Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen L, Olsson L (2002) Appl Microbiol Biotechnol 59:436 Google Scholar
  130. 130.
    Devantier R, Scheithauer B, Villas-Boas SG, Pedersen S, Olsson L (2005) Biotechnol Bioengin 90:703 Google Scholar
  131. 131.
    Villas-Boas SG, Åkesson M, Nielsen J (2005) Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Res 5:703 Google Scholar
  132. 132.
    Wang QZ, Wu CY, Chen T, Chen X, Zhao XM (2006) Appl Microbiol Biotechnol 70:151 Google Scholar
  133. 133.
    Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, New York Google Scholar
  134. 134.
    Stephanopoulos GN (1999) Metab Eng 1:1 Google Scholar
  135. 135.
    Maaheimo H, Fiaux J, Cakas ZP, Bailey JE, Sauer U, Szyperski T (2001) Eur J Biochem 268:2464 Google Scholar
  136. 136.
    Wittmann C (2002) Adv Biochem Eng Biotechnol 74:39 Google Scholar
  137. 137.
    Sauer U (2004) Curr Opin Biotechnol 15:58 Google Scholar
  138. 138.
    Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L (2005) Metab Eng 7:437 Google Scholar
  139. 139.
    Roca C, Nielsen J, Olsson L (2003) Appl Environ Microbiol 69:4732 Google Scholar
  140. 140.
    Sonderegger M, Schümperli M, Sauer U (2004) Appl Environ Microbiol 70:2892 Google Scholar
  141. 141.
    Herrard MJ, Fong SS, Palsson BØ (2006) PLos Comput Biol 2:e72 Google Scholar
  142. 142.
    Fischer E, Zamboni N, Sauer U (2004) Anal Biochem 325:308 Google Scholar
  143. 143.
    Zamboni N, Fischer E, Sauer U (2005) BMC Bioinformatics 6:209 Google Scholar
  144. 144.
    Yang TH, Wittmann C, Heinzle E (2006) Metab Eng 8:417 Google Scholar
  145. 145.
    Yang TH, Wittmann C, Heinzle E (2006) Metab Eng 8:432 Google Scholar
  146. 146.
    Editorial (2006) Nat Biotechnol 24:725 Google Scholar
  147. 147.
    Editorial (2006) Nat Biotechnol 24:726 Google Scholar
  148. 148.
    Herrera S (2006) Nat Biotechnol 24:755 Google Scholar
  149. 149.
    Vertes AA, Inui M, Yukawa H (2006) Nat Biotechnol 24:761 Google Scholar
  150. 150.
    Brevan MW, Franssen MCR (2006) Nat Biotechnol 24:765 Google Scholar
  151. 151.
    Malça J, Freire F (2006) Energy 31:3362 Google Scholar
  152. 152.
    Cardona Alzate CA, Sánchez Toro OJ (2005) Energy 31:2447 Google Scholar
  153. 153.
    Tonon S, Brown MT, Luchi F, Mirandola A, Stoppato A, Ulgiati S (2006) Energy 31:149 Google Scholar
  154. 154.
    Bro C, Regenberg B, Förster J, Nielsen J (2006) Metab Eng 8:102 Google Scholar
  155. 155.
    Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Mol Microbiol 15:795 Google Scholar
  156. 156.
    Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) FEMS Yeast Res 4:69 Google Scholar
  157. 157.
    Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) FEMS Yeast Res 5:399 Google Scholar
  158. 158.
    Kuyper M, Torikens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) FEMS Yeast Res 5:925 Google Scholar
  159. 159.
    Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) FEMS Yeast Res 4:655 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • José Manuel Otero
    • 1
  • Gianni Panagiotou
    • 1
  • Lisbeth Olsson
    • 1
  1. 1.Center for Microbial Biotechnology, BioCentrumTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations