Biofuels pp 41-65 | Cite as

Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production

  • Mats Galbe
  • Guido Zacchi
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 108)


Second-generation bioethanol produced from various lignocellulosic materials, such as wood, agricultural or forest residues, has the potential to be a valuable substitute for, or a complement to, gasoline. One of the crucial steps in the ethanol production is the hydrolysis of the hemicellulose and cellulose to monomer sugars. The most promising method for hydrolysis of cellulose to glucose is by use of enzymes, i.e. cellulases. However, in order to make the raw material accessible to the enzymes some kind of pretreatment is necessary. During the last few years a large number of pretreatment methods have been developed, comprising methods working at low pH, i.e. acid based, medium pH (without addition of catalysts), and high pH, i.e. with a base as catalyst. Many methods have been shown to result in high sugar yields, above 90% of theoretical for agricultural residues, especially for corn stover. For more recalcitrant materials, e.g. softwood, acid hydrolysis and steam pretreatment with acid catalyst seem to be the methods that can be used to obtain high sugar and ethanol yields. However, for more accurate comparison of different pretreatment methods it is necessary to improve the assessment methods under real process conditions. The whole process must be considered when a performance evaluation is to be made, as the various pretreatment methods give different types of materials. (Hemicellulose sugars can be obtained either in the liquid as monomer or oligomer sugars, or in the solid material to various extents; lignin can be either in the liquid or remain in the solid part; the composition and amount/concentration of possible inhibitory compounds also vary.) This will affect how the enzymatic hydrolysis should be performed (e.g. with or without hemicellulases), how the lignin is recovered and also the use of the lignin co-product.

Assessment Enzymatic hydrolysis Lignocellulose Pretreatment Review  


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    European Union (2006) Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. European Commission Google Scholar
  2. 2.
    Gregg DJ, Boussaid A, Saddler JN (1998) Bioresour Technol 63:7 CrossRefGoogle Scholar
  3. 3.
    Wingren A, Galbe M, Zacchi G (2003) Biotechnol Prog 19:1109 CrossRefGoogle Scholar
  4. 4.
    Ogier JC, Ballerini D, Leygue JP, Rigal L, Pourquie J (1999) Oil Gas Sci Technol 54:67 CrossRefGoogle Scholar
  5. 5.
    Yu ZS, Zhang HX (2004) Bioresour Technol 93:199 CrossRefGoogle Scholar
  6. 6.
    Sheehan J (2001) The road to bioethanol. A strategic perspective of the US Department of Energy's National Ethanol Program. In: Himmel ME, Baker JO, Saffler JN (eds) Glycosyl hydrolases for biomass conversion. American Chemical Society, Washington DC, pp 2–25 Google Scholar
  7. 7.
    Sun Y, Cheng J (2002) Bioresour Technol 83:1 CrossRefGoogle Scholar
  8. 8.
    Overend RP, Chornet E (1987) Philos Trans R Soc Lond A 321(1561):523 CrossRefGoogle Scholar
  9. 9.
    Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Chem Eng Sci 47:1109 CrossRefGoogle Scholar
  10. 10.
    Chum HL, Johnson DK, Black SK, Overend RP (1990) Ind Eng Res 29:156 CrossRefGoogle Scholar
  11. 11.
    Boussaid A, Robinson J, Cai Y, Gregg DJ, Saddler JN (1999) Biotechnol Bioeng 64:284 CrossRefGoogle Scholar
  12. 12.
    Wu MM, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Appl Biochem Biotechnol 47:77 Google Scholar
  13. 13.
    Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Appl Biochem Biotechnol 133:77 Google Scholar
  14. 14.
    Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Appl Biochem Biotechnol 561:84 Google Scholar
  15. 15.
    Mandels M, Reese ET (1963) Inhibition of cellulases and β-glucosidases. In: Reese ET (ed) Advances In enzymic hydrolysis of cellulose and related materials. Pergamon, London, pp 115 Google Scholar
  16. 16.
    Sternberg D, Vijayakumar P, Reese ET (1977) Can J Microbiol 23:139 CrossRefGoogle Scholar
  17. 17.
    Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Biotechnol Bioeng 36:275 CrossRefGoogle Scholar
  18. 18.
    Tengborg C, Galbe M, Zacchi G (2001) Biotechnol Prog 17:110 CrossRefGoogle Scholar
  19. 19.
    NREL (2004) Chemical analysis and testing standard procedures LAP-009. National Renewable Energy Laboratory, Golden, CO, USA Google Scholar
  20. 20.
    Tengborg C, Galbe M, Zacchi G (2001) Enzyme Microb Technol 28:835 CrossRefGoogle Scholar
  21. 21.
    Datta R (1981) Proc Biochem June/July:16 Google Scholar
  22. 22.
    Litzen D, Dixon D, Gilcrease P, Winter R (2006) Pretreatment of biomass for ethanol production. US Patent 2006 0141,584 Google Scholar
  23. 23.
    Takacs E, Wojnarovits L, Foldvary C, Hargittai P, Borsa J, Sajo I (2000) Radiat Phys Chem 57:399 CrossRefGoogle Scholar
  24. 24.
    Sehoon K, Holtzapple MT (2005) Bioresour Technol 96:1994 CrossRefGoogle Scholar
  25. 25.
    Chang VS, Kaar WE, Burr B, Holtzapple MT (2001) Biotechnol Lett 23:1337 Google Scholar
  26. 26.
    Palmqvist E, Hahn-Hägerdal B (2000) Bioresour Technol 74:17 CrossRefGoogle Scholar
  27. 27.
    Palmqvist E, Hahn-Hägerdal B (2000) Bioresour Technol 74:25 CrossRefGoogle Scholar
  28. 28.
    Larsson S, Palmqvist E, Hahn-Hägerdak B (1999) Enzyme Microb Technol 24:151 CrossRefGoogle Scholar
  29. 29.
    Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J (2005) Biotech Bioeng 90:473 CrossRefGoogle Scholar
  30. 30.
    Knappert D, Grethlein H, Converse A (1980) Biotechnol Bioeng 22:1449 CrossRefGoogle Scholar
  31. 31.
    Brownell HH, Yu EKC, Saddler JN (1985) Biotechnol Bioeng 28:792 CrossRefGoogle Scholar
  32. 32.
  33. 33.
  34. 34.
  35. 35.
    Bouchard J, Nguyen TS, Chornet E, Overend RP (1989) Bioresour Technol 36:121 CrossRefGoogle Scholar
  36. 36.
    Griebl A, Lange T, Weber H, Milacher W, Sixta H (2006) Macromol Symp 232:107 CrossRefGoogle Scholar
  37. 37.
    Van Walsum GP, Allen SG, Spencer MJ, Laser MS, Antal MJ, Lynd LR (1996) Appl Biochem Biotechnol 157:57 Google Scholar
  38. 38.
    Schmidt AS, Thomsen AB (1998) Bioresour Technol 64:139 CrossRefGoogle Scholar
  39. 39.
    Dale BE, Moreira MJ (1982) Biotechnol Bioeng Symp 12:31 Google Scholar
  40. 40.
    Teymouri F, Laureano-Peres L, Alizadeh H, Dale BE (2005) Bioresour Technol 96:2014 CrossRefGoogle Scholar
  41. 41.
    Gollapalli LE, Dale BE, Rivers DM (2002) Appl Biochem Bioeng 98:23 Google Scholar
  42. 42.
    Hsu TA (1996) In: Wyman CE (ed) Handbook on bioethanol production and utilization. Taylor & Francis, Washington, p 179 Google Scholar
  43. 43.
    Belkacemi K, Turtotte G, de Halleux D, Savoie P (1998) Appl Biochem Biotechnol 70–72:441 CrossRefGoogle Scholar
  44. 44.
    Sun Y, Cheng J (2002) Bioresour Technol 83:1 CrossRefGoogle Scholar
  45. 45.
    Kim SB, Lee YY (1996) Appl Biochem Bioeng 147:57 Google Scholar
  46. 46.
    Iyer PV, Wu Z, Kim SB, Lee YY (1996) Appl Biochem Bioeng 121:57 Google Scholar
  47. 47.
    Lee J (1997) J Biotechnol 56:1 CrossRefGoogle Scholar
  48. 48.
    Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani A (2004) Biotechnol Prog 20:200 CrossRefGoogle Scholar
  49. 49.
    McMillan JD, Newman M, Templeton D, Mohagheghi A (1999) Appl Biochem Biotechnol 77–79:649 CrossRefGoogle Scholar
  50. 50.
    Saddler JN, Yu EKC, Mes-Hartree M, Levitin N, Brownell HH (1985) Comm Eur Commun EUR10024:978 Google Scholar
  51. 51.
    Sassner P, Galbe M, Zacchi G (2005) Appl Biochem Biotechnol 1101:121 Google Scholar
  52. 52.
    Tharakan PJ, Volk TA, Abrahamson IP, White EH (2003) Biomass Bioenergy 25:571 CrossRefGoogle Scholar
  53. 53.
    Alfani F (2000) J Ind Microbiol Biotechnol 25:184 CrossRefGoogle Scholar
  54. 54.
    Ballesteros I, Negro MJ, Olvia JM, Cabanas A, Manzanerez P, Ballesteros M (2006) Appl Biochem Biotechnol 496:129 Google Scholar
  55. 55.
    Curreli N (2002) Process Biochem 37:937 CrossRefGoogle Scholar
  56. 56.
    Palmarola-Adrados B, Galbe M, Zacchi G (2004) Appl Biochem Biotechnol 113:989 CrossRefGoogle Scholar
  57. 57.
    Saha BC, Iten IB, Cotta MA, Wu YV (2005) Process Biochem 40:3693 CrossRefGoogle Scholar
  58. 58.
    Linde M, Galbe M, Zacchi G (2006) Appl Biochem Biotechnol 546:129 Google Scholar
  59. 59.
    Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Process Biochem 39:1843 CrossRefGoogle Scholar
  60. 60.
    Laser MS, Schulman DE, Allen SG, Lichwa J, Antal MJ, Lynd LR (2002) Bioresour Technol 81:83 CrossRefGoogle Scholar
  61. 61.
    Martin C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Enzyme Microb Technol 31:274 CrossRefGoogle Scholar
  62. 62.
    Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Process Biochem 41:423 CrossRefGoogle Scholar
  63. 63.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959 CrossRefGoogle Scholar
  64. 64.
    Kim TH, Lee YY, Sunwoo C, Kim JS (2006) Appl Biochem Biotechnol 133:41 CrossRefGoogle Scholar
  65. 65.
    Kim TH, Lee YY (2005) Bioresour Technol 96:2007 CrossRefGoogle Scholar
  66. 66.
    Kaar WE, Holtzapple MT (2000) Biomass Bioenergy 18:189 CrossRefGoogle Scholar
  67. 67.
    Kim S, Holtzapple MT (2005) Bioresour Technol 96:1994 CrossRefGoogle Scholar
  68. 68.
    Varga E, Szengyel Z, Reczey K (2002) Appl Biochem Bioeng 98:73 Google Scholar
  69. 69.
    Kálmán G, Varga E, Reczey K (2002) Chem Biochem Eng 16:151 Google Scholar
  70. 70.
    Lloyd TA, Wyman CE (2005) Bioresour Technol 96:1967 CrossRefGoogle Scholar
  71. 71.
    Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Bioresour Technol 96:1986 CrossRefGoogle Scholar
  72. 72.
    Varga E, Reczey K, Zacchi G (2004) Appl Biochem Biotechnol 509:113 Google Scholar
  73. 73.
    Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Biomass Bioenergy 30:863 CrossRefGoogle Scholar
  74. 74.
    Ohgren K, Galbe M, Zacchi G (2005) Appl Biochem Biotechnol 1055:121 Google Scholar
  75. 75.
    Varga E, Schmidt AS, Reczey K, Thomsen AB (2003) Appl Biochem Biotechnol 104:37 CrossRefGoogle Scholar
  76. 76.
    Varga E, Klinke B, Reczey K, Thomsen AB (2004) Biotechnol Bioeng 88:567 CrossRefGoogle Scholar
  77. 77.
    Öhgren K, Bengtsson O, Gorwa-Grauslund M-F, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) J Biotechnol 126:488 CrossRefGoogle Scholar
  78. 78.
    Öhgren K, Bura R, Saddler J, Zacchi G (2007) Bioresour Technol 98:2503 CrossRefGoogle Scholar
  79. 79.
    Eggeman T, Elander RT (2005) Bioresour Technol 96:2019 CrossRefGoogle Scholar
  80. 80.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959 CrossRefGoogle Scholar
  81. 81.
    Aden A, Ruth MF, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) NREL/TP-510–32438. National Renewable Energy Labs, Golden, CO, USA Google Scholar
  82. 82.
    Clark TA, Mackie KLJ (1987) Wood Chem Technol 7:373 CrossRefGoogle Scholar
  83. 83.
    Stenberg K, Tengborg C, Galbe M, Zacchi G (1998) J Chem Technol Biotechnol 71:299 CrossRefGoogle Scholar
  84. 84.
    Tengborg C, Stenberg K, Galbe M, Zacchi G, Larsson S, Palmqvist E, Hahn-Hägerdal B (1998) Appl Biochem Biotechnol 70–72:3 CrossRefGoogle Scholar
  85. 85.
    Söderström J, Pilcher L, Galbe M, Zacchi G (2002) Appl Biochem Biotechnol 98–100:5 CrossRefGoogle Scholar
  86. 86.
    Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Biomass Bioenergy 24:475 CrossRefGoogle Scholar
  87. 87.
    Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Appl Biochem Biotechnol 127:105 Google Scholar
  88. 88.
    Nguyen QA, Tucker MP, Boynton BL, Keller FA, Schell DJ (1998) Appl Biochem Biotechnol 77:70 Google Scholar
  89. 89.
    Schwald W, Smaridge T, Chan M, Breuil C, Saddler JN (1989) In: Coughlan MP (ed) Enzyme system. Comm Eur Commun. Elsevier, p 231 Google Scholar
  90. 90.
    Wingren A, Söderström J, Galbe M, Zacchi G (2004) Biotechnol Prog 20:1421 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Dept. of Chemical EngineeringLund UniversityLundSweden

Personalised recommendations