Advertisement

Biofuels pp 95-120 | Cite as

Progress and Challenges in Enzyme Development for Biomass Utilization

  • Sandra T. Merino
  • Joel CherryEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 108)

Abstract

Enzymes play a critical role in the conversion of lignocellulosic waste into fuels and chemicals, but the high cost of these enzymes presents a significant barrier to commercialization. In the simplest terms, the cost is a function of the large amount of enzyme protein required to break down polymeric sugars in cellulose and hemicellulose to fermentable monomers. In the past 6 years, significant effort has been expended to reduce the cost by focusing on improving the efficiency of known enzymes, identification of new, more active enzymes, creating enzyme mixes optimized for selected pretreated substrates, and minimization of enzyme production costs. Here we describe advances in enzyme technology for use in the production of biofuels and the challenges that remain.

Biomass Enzymes Hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Energy Information Administration (2005) Official energy statistics from the US Government. Available from http://www.eia.doe.gov/emeu/international/contents.html , last visited: 10 May 2007
  2. 2.
    Jessen H (2006) Ethanol Producer, October, p 44 Google Scholar
  3. 3.
    Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Report no ORNL/TM-2005/66, Oak Ridge National Laboratory. Available online at http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf , last visited: 10 May 2007
  4. 4.
    Gallagher PW (2006) Choices 21(1), Available online at http://www.choicesmagazine.org/2006-1/biofuels/2006-1-04.htm , last visited: 10 May 2007
  5. 5.
    US Department of Energy (2007) Biomass program: theoretical ethanol yield calculator. Available online at http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html , last visited: 10 May 2007
  6. 6.
    Sluiter AD, Hayward TK, Jurich CK, Newman MM, Templeton DW, Ruth MF, Evans KW, Hames BR, Thomas SR (2003) 25th symposium on biotechnology for fuels and chemicals. National Renewable Energy Laboratory, Golden, CO, p 30. Available online at http://www.nrel.gov/docs/gen/fy03/33925.pdf , last visited: 10 May 2007
  7. 7.
    US Department of Energy (2007) Biomass program: biomass feedstock composition and property database. Available online at http://www1.eere.energy.gov/biomass/feedstock_databases.html , last visited: 10 May 2007
  8. 8.
    Mansfield SH, Mooney C, Saddler JN (1999) Biotechnol Prog 15:804 CrossRefGoogle Scholar
  9. 9.
    Bernandez TD, Lyford K, Hogsett DA, Lynd LR (1993) Biotechnol Bioeng 42:899 CrossRefGoogle Scholar
  10. 10.
    Mooney AC, Mansfield SD, Touhy MG, Saddler JN (1998) Bioresour Technol 64:113 CrossRefGoogle Scholar
  11. 11.
    Fan LT, Lee YH, Beardmond DH (1980) In: Fiechter A (ed) Advances in biochemical engineering. Springer, Berlin Heidelberg New York Google Scholar
  12. 12.
    Mosiera N, Wyman CE, Dale BE, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Bioresour Technol 96:673 CrossRefGoogle Scholar
  13. 13.
    National Renewable Energy Laboratory (2002) Enzyme sugar-ethanol platform project. NREL, Golden, CO, http://www1.eere.energy.gov/biomass/pdfs/stage2_overview.pdf
  14. 14.
    Cadoche L, Lopez GD (1989) Biol Wastes 30:153 CrossRefGoogle Scholar
  15. 15.
    Morjanoff PJ, Gray PP (1987) Biotechnol Bioeng 29:733 CrossRefGoogle Scholar
  16. 16.
    Holtzapple MT, Jun JH, Ashok G, Patibandla SL, Dale BE (1991) Appl Biochem Biotechnol 28/29:59 Google Scholar
  17. 17.
    Torget R, Walter P, Himmel ME, Grohmann K (1991) Appl Biochem Biotechnol 28/29:75 CrossRefGoogle Scholar
  18. 18.
    Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Biotechnol Bioeng 49:568 CrossRefGoogle Scholar
  19. 19.
    Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Appl Biochem Biotechnol 84–86:561 CrossRefGoogle Scholar
  20. 20.
    Lloyd TA, Wyman CE (2005) Bioresour Technol 96:1967 CrossRefGoogle Scholar
  21. 21.
    Liu C, Wyman CE (2005) Bioresour Technol 96:1978 CrossRefGoogle Scholar
  22. 22.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959 CrossRefGoogle Scholar
  23. 23.
    Yang B, Wyman CE (2004) Biotechnol Bioeng 86:88 CrossRefGoogle Scholar
  24. 24.
    Kim TH, Lee YY (2005) Bioresour Technol 96:2007 CrossRefGoogle Scholar
  25. 25.
    Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Bioresour Technol 96:2014 CrossRefGoogle Scholar
  26. 26.
    Klinke HB, Thomsen AB, Ahring BK (2004) Appl Microbiol Biotechnol 66:10 CrossRefGoogle Scholar
  27. 27.
    Mes-Hartree M, Saddler JN (1983) Biotechnol Lett 5:531 CrossRefGoogle Scholar
  28. 28.
    Mandels M, Weber J, Parizek R (1971) Appl Micobiol 21:152 Google Scholar
  29. 29.
    Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Biotechnol Bioeng 96:862 CrossRefGoogle Scholar
  30. 30.
    Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Biochem J 298:705 Google Scholar
  31. 31.
    Reese RT (1976) History of the cellulase program at the U.S. Army Natick Development Center. Biotechnol Bioeng Symp 6:9–20 Google Scholar
  32. 32.
    Montenecourt BS, Eveleigh DE (1979) Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. Adv Chem Ser 181:289 CrossRefGoogle Scholar
  33. 33.
    Mishra S, Gopalkrishnan KS (1984) J Ferment Technol 62:495 Google Scholar
  34. 34.
    Suominen PL, Mantyla AL, Karhunen T, Hakola S, Nevalainen KMH (1993) Mol Gen Genet 241:523 CrossRefGoogle Scholar
  35. 35.
    Reese ET, Siu RGH, Levinson HS (1950) J Bacteriol 59:485 Google Scholar
  36. 36.
    Wood TM, McCrae SI (1972) Biochem J 128:1183 Google Scholar
  37. 37.
    Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H (2000) Appl Envrion Micro 66:1444 CrossRefGoogle Scholar
  38. 38.
    Sternberg D, Vijayakumar P, Reese E (1977) Canadian J Microbiol 23:139 CrossRefGoogle Scholar
  39. 39.
    Sorensen H, Pedersen S, Vikso-Nielsen A, Meyer A (2005) Enzyme Microb Technol 36:773 CrossRefGoogle Scholar
  40. 40.
    Ordaz-Ortiz J, Saulnier L (2005) J Cereal Sci 42:119 CrossRefGoogle Scholar
  41. 41.
    Saha B (2000) Biotechnol Adv 18:403 CrossRefGoogle Scholar
  42. 42.
    Biely P (1985) Trends Biotechnol 3:286 CrossRefGoogle Scholar
  43. 43.
    Sorensen H, Meyer A, Pedersen S (2003) Biotechnol Bioeng 81:726 CrossRefGoogle Scholar
  44. 44.
    Sorensen H, Pedersen S, Meyer A (2006) Biotechnol Prog 22:505 CrossRefGoogle Scholar
  45. 45.
    Toyama H, Yamagishi N, Toyama N (2002) J Mol Catal B: Enzymatic 17:175 CrossRefGoogle Scholar
  46. 46.
    US Department of Energy (2006) Biomass program: standard biomass analytical procedures. Available online at http://www1.eere.energy.gov/biomass/analytical_procedures.html , last visited: 10 May 2007
  47. 47.
    Wiselogel A, Tyson S, Johnson D (1996) In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC, p 105 Google Scholar
  48. 48.
    Sorensen HR, Pedersen S, Meyer AS (2006) Enzyme Microb Technol (in press) DOI: 10.1016/j.enzmictec.2006.12.009 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Novozymes Inc.DavisUSA

Personalised recommendations