Biofuels pp 121-145

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 108)

Thermostable Enzymes in Lignocellulose Hydrolysis

  • Liisa Viikari
  • Marika Alapuranen
  • Terhi Puranen
  • Jari Vehmaanperä
  • Matti Siika-aho

Abstract

Thermostable enzymes offer potential benefits in the hydrolysis of lignocellulosic substrates; higher specific activity decreasing the amount of enzymes, enhanced stability allowing improved hydrolysis performance and increased flexibility with respect to process configurations, all leading to improvement of the overall economy of the process. New thermostable cellulase mixtures were composed of cloned fungal enzymes for hydrolysis experiments. Three thermostable cellulases, identified as the most promising enzymes in their categories (cellobiohydrolase, endoglucanase and β-glucosidase), were cloned and produced in Trichoderma reesei and mixed to compose a novel mixture of thermostable cellulases. Thermostable xylanase was added to enzyme preparations used on substrates containing residual hemicellulose. The new optimised thermostable enzyme mixtures were evaluated in high temperature hydrolysis experiments on technical steam pretreated raw materials: spruce and corn stover. The hydrolysis temperature could be increased by about 10–15 °C, as compared with present commercial Trichoderma enzymes. The same degree of hydrolysis, about 90% of theoretical, measured as individual sugars, could be obtained with the thermostable enzymes at 60 °C as with the commercial enzymes at 45 °C. Clearly more efficient hydrolysis per assayed FPU unit or per amount of cellobiohydrolase I protein used was obtained. The maximum FPU activity of the novel enzyme mixture was about 25% higher at the optimum temperature at 65 °C, as compared with the highest activity of the commercial reference enzyme at 60 °C. The results provide a promising basis to produce and formulate improved enzyme products. These products can have high temperature stability in process conditions in the range of 55–60 °C (with present industrial products at 45–50 °C) and clearly improved specific activity, essentially decreasing the protein dosage required for an efficient hydrolysis of lignocellulosic substrates. New types of process configurations based on thermostable enzymes are discussed.

Thermostable Cellulases Cellobiohydrolase Endoglucanase β-Glucosidase Lignocellulose Hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrha B, Gashe BA (1992) Cellulase production and activity in a species of Cladosporium. World J Microbiol Biotech 8:164–166 CrossRefGoogle Scholar
  2. 2.
    Barnett C Berka R, Fowler T (1991) Cloning and amplification of the gene encoding an extracellular β-glucose from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Biotechnology 9:562–567 CrossRefGoogle Scholar
  3. 3.
    Barr B Hsieh, Ganem B, Wilson BD (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592 CrossRefGoogle Scholar
  4. 4.
    Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing methods for assay of xylanase activity. J Biotechnol 23:257–270 CrossRefGoogle Scholar
  5. 5.
    Bailey M, Nevalainen H (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol 3:153–157 CrossRefGoogle Scholar
  6. 6.
    Bailey MJ, Tähtiharju J (2003) Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl Microbiol Biotechnol 62:156–162 CrossRefGoogle Scholar
  7. 7.
    Bergquist P, Gibbs M, Morris D, Te'o V, Jsaul D, Morgan H (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99–110 CrossRefGoogle Scholar
  8. 8.
    Bergquist PL, Te'o VSJ, Gibbs MD, Curah NC, Nevalainen KMH (2004) Recombinant enzymes from thermophilic micro-organisms expressed in fungal hosts. Biochem Soc Trans 32(2):293–297 CrossRefGoogle Scholar
  9. 9.
    Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A, Okunev O, Gusakov A, Maximenko V, Gregg D, Sinitsyn A, Saddler J (2005) Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates – evidence for the role of accessory enzymes. Enzyme Microb Technol 37:175–184 CrossRefGoogle Scholar
  10. 10.
    Bernfeld P (1955) Amylases α and β. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic, New York, pp 149–158 Google Scholar
  11. 11.
    Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781 Google Scholar
  12. 12.
    Bronnenmeier K, Rücknagel K, Staudenbauer W (1991) Purification and properties of a novel type exo-1,4-β-glucanase (Avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 200:379–385 CrossRefGoogle Scholar
  13. 13.
    Bronnenmeier K, Staudenbauer W (1990) Cellulose hydrolysis by a highly thermostable endo-1,4-glucanase (Avicelase I) from Clostridium stercorarium. Enzyme Microbial Technol 12:431–436 CrossRefGoogle Scholar
  14. 14.
    Bronnenmeier K, Kern A, Liebl W, Staudenbauer W (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61:1339–1407 Google Scholar
  15. 15.
    Coughlan M, McHale A (1988) Purification of β-d-glucoside glucohydrolases of Talaromyces emersonii. Methods Enzymol 160:437–443 CrossRefGoogle Scholar
  16. 16.
    Coutinho PM, Henrissat B (1999) Carbohydrate active enzymes. Database available at http://www.cazy.org , last visited: 10 May 2007
  17. 17.
    Demain A, Newcomb M, Wu JHD (2005) Cellulase, clostridia and ethanol. Microb Molec Biol Rev 69:124–154 CrossRefGoogle Scholar
  18. 18.
    Ding S-Y (2006) Thermotolerant cellulase. Industrial Bioproc 28(7):3–4 Google Scholar
  19. 19.
    Divne C, Ståhlberg J, Teeri T, Jones T (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325 CrossRefGoogle Scholar
  20. 20.
    Eklund R, Galbe M, Zacchi G (1990) Optimization of temperature and enzyme concentration in the enzymatic saccharification of steam pretreated willow. Enzyme Microb Technol 12:225–228 CrossRefGoogle Scholar
  21. 21.
    Evans B, Gilman A, Cordray K, Woodward J (2000) Mechanism of substrate hydrolysis by a thermophilic endoglucanase from Thermotoga maritima. Biotechnol Lett 22:735–740 CrossRefGoogle Scholar
  22. 22.
    Fauth U, Romaniec M, Kobayashi T, Demain A (1991) Purification and characterization of endoglucanase Ss from Clostridium thermocellum. Biochem J 279:67–73 Google Scholar
  23. 23.
    Feldman KA, Lovett JS, Tsao GT (1988) Isolation of cellulase enzymes from the thermophilic fungus Thermoascus aurantiacus and regulation of enzyme production. Enzyme Microb Technol 10:262–272 CrossRefGoogle Scholar
  24. 24.
    Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek T, England G, Kelley A, Meerman H, Mitchell T, Mitchinson C, Olivares H, Teunissen P, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278(34):31988–31997 CrossRefGoogle Scholar
  25. 25.
    Fullbrook PD (1996) Practical limits and prospects (kinetics). In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. MacMillan, London, pp 508–509 Google Scholar
  26. 26.
    Gomes I, Gomes J, Gomes D, Steiner W (2000) Simultaneous production of high activities of thermostable endoglucanase and β-d-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53:461–468 CrossRefGoogle Scholar
  27. 27.
    Grassick A, Murray P, Thompson R, Collins C, Byrnes L, Birrane G, Higgins T, Tuohy M (2004) Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem 271:4495–4506 CrossRefGoogle Scholar
  28. 28.
    Grishutin S, Gusakov A, Markov A, Ustinov B, Semenova M, Sinitsyn A (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281 Google Scholar
  29. 29.
    Hakamada Y, Koike K, Yoshimatsu T, Mori H, Kobayashi T, Ito S (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles 1:151–156 CrossRefGoogle Scholar
  30. 30.
    Harchand R, Singh S (1997) Characterization of cellulase complex of Streptomyces albaduncus; thermostable cellulase, cellobiohydrolase and beta-glucosidase characterization. J Basic Microbiol 37:93–103 CrossRefGoogle Scholar
  31. 31.
    Henrissat B, Driquez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in degradation of cellulose. Bio/Technology 3:722–726 CrossRefGoogle Scholar
  32. 32.
    Himmel M, Adney W, Tucker M, Grohmann K (1994) Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068. US Patent 5275944 Google Scholar
  33. 33.
    Hogsett DA, Ahn H-J, Bernardez TD, South CR, Lynd LR (1992) Direct microbial conversion. Prospects, progress and obstacles. Appl Biochem Biotechnol 34:527–541 CrossRefGoogle Scholar
  34. 34.
    Hreggvidsson G, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson A (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049 Google Scholar
  35. 35.
    Ishihara M, Shinkichi T, Toyama S (1999) Disintegration of uncooked rice by carboxymethyl cellulase from Sporotrichum sp. HG-I. J Biosci Bioeng 87:249–251 CrossRefGoogle Scholar
  36. 36.
    International Union of Pure and Applied Chemistry (IUPAC) (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268 Google Scholar
  37. 37.
    Jang HD, Chen KS (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3-1. World J Microb Biotechnol 19:263–268 CrossRefGoogle Scholar
  38. 38.
    Karlsson J, Momcilovic D, Wittgren B, Schülein M, Tjerneld F, Brinkman G (2002) Enzymatic degradation of carboxymethyl cellulose hydrolysed by the endoglucanases Cel5A, Cel7B and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45A core from Trichoderma reesei. J Biotechnol 63:32–40 Google Scholar
  39. 39.
    Klyosov A (1990) Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29:10577–10585 CrossRefGoogle Scholar
  40. 40.
    Lin J, Pillay B, Singh S (1999) Purification and biochemical characteristics of β-d-glucosidase from a thermophilic fungus, Thermomyces lanuginosus–SSBP. Biotechnol Appl Biochem 30:81–87 Google Scholar
  41. 41.
    Lin S, Stutzenberger F (1995) Purification and characterization of the major beta-1,4-endoglucanase from Thermomonospora curvata. J Appl Bacteriol 79:447–53 Google Scholar
  42. 42.
    Li D-C, Lu M, Li Y-A, Lu J (2003) Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT 2. Enzyme Microb Technol 33:932–937 CrossRefGoogle Scholar
  43. 43.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–75 Google Scholar
  44. 44.
    Macarron R, Acebal C, Castillon M, Claeyssens M (1996) Mannanase activity of endoglucanase III from Trichoderma reesei QM9414. Biochem Lett 18:599–602 CrossRefGoogle Scholar
  45. 45.
    Maheshwari R, Bharadwaj G, Bhat M (2000) Thermophilic fungi: Their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488 CrossRefGoogle Scholar
  46. 46.
    Medve J, Ståhlherg J, Tjerneld F (1994) Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44:1064–1073 CrossRefGoogle Scholar
  47. 47.
    Miettinen-Oinonen A, Londesborough J, Vehmaanperä J, Haakana H, Mäntylä A, Lantto R, Elovainio M, Joutsjoki V, Paloheimo M, Suominen P (1996) New cellulases from fungi for use in pulp and textile processing and the genes encoding the enzymes. WO Patent no. 9714804 Google Scholar
  48. 48.
    Millner PD (1977) Radial growth responses to temperature by 58 Chaetomium species and some taxonomic relationships. Mycologia 69:492–502 CrossRefGoogle Scholar
  49. 49.
    Mooney C, Mansfield S, Tuohy M, Saddler J (1998) The effect of the initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Biores Technol 64:113–119 CrossRefGoogle Scholar
  50. 50.
    Murray P, Grassick A, Laffey C, Cuffe M, Higgins T, Savage A, Planas A, Tuohy M (2001) Isolation and characterization of a thermostable endo-β-glucanase active on 1,3-1,4-β-d-glucans from the aerobic fungus Talaromyces emersonii CBS 814.70. Enzyme Microb Technol 29:90–98 CrossRefGoogle Scholar
  51. 51.
    Nidetzky B, Claeyssens M (1994) Specific quantification of Trichoderma reesei cellulases in reconstituted mixtures and its application to cellulose-cellulose binding studies. Biotechnol Bioeng 44:961–966 CrossRefGoogle Scholar
  52. 52.
    Nidetzky B, Hayn M, Macarron R, Steiner W (1993) Synergism of Trichoderma reesei cellulases while degrading different celluloses. Biotechnol Lett 151:71–76 CrossRefGoogle Scholar
  53. 53.
    Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: A new model for synergistic interaction. Biochem J 298:705–710 Google Scholar
  54. 54.
    Nigam P, Prabhu KA (1991) Influence of sugars on the activity of cellulose systems from two basidomycetes cultures. J Basic Microbiol 31:279–283 CrossRefGoogle Scholar
  55. 55.
    Nutt A, Sild V, Petterson G, Johansson G (1998) Progress curves a mean for functional classification of cellulases. Eur J Biochem 258:200–206 CrossRefGoogle Scholar
  56. 56.
    Palonen H, Viikari L (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 86:550–557 CrossRefGoogle Scholar
  57. 57.
    Park C, Kawaguchi T, Sumitani J, Arai M (2001) Purification and characterization of cellulases (CBH I and EGL 1) produced by thermophilic microorganism Streptomyces sp. M23. Appl Biol Sci 7(1):27–35 Google Scholar
  58. 58.
    Parry N, Beever D, Owen E, Vandenbergh I, van Beeumen J, Bhat M (2001) Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–127 CrossRefGoogle Scholar
  59. 59.
    Parry N, Beever D, Owen E, Nerinckx W, Claeyssens M, Van Beeumen J, Bhat M (2002) Biochemical characterization and mode of action of a thermostable endoglucanase purified from Thermoascus aurantiacus. Arch Biochem Biophys 404:243–253 CrossRefGoogle Scholar
  60. 60.
    Phillippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41:846–853 CrossRefGoogle Scholar
  61. 61.
    Romaniec M, Fauth U, Kobayashi T, Huskisson N, Barker P, Demain A (1992) Purification and characterization of a new endoglucanase from Clostridium thermocellum. Biochem J 283:69–73 Google Scholar
  62. 62.
    Rosgaard L, Pedersen S, Cherry JR, Harris P, Meyer AS (2006) Efficiency of new fungal cellulose systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnol Progr 22:493–498 CrossRefGoogle Scholar
  63. 63.
    Roy S, Raha S, Dey S, Chakrabarty S (1990) Effect of temperature on the production and location of cellulose components in Myceliopthora thermophila D-14 (ATCC 48104). Enzyme Microb Technol 12:710–713 CrossRefGoogle Scholar
  64. 64.
    Ruttersmith L, Daniel R (1991) Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1: purification and properties. Biochem J 277:887–890 Google Scholar
  65. 65.
    Saboto D, Nucci R, Rossi M, Gryczynski I, Gryczynski Z, Lakowicz J (1999) The β-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: enzyme activity and conformational dynamics at temperatures above 100 °C. Biophys Chem 81:23–31 CrossRefGoogle Scholar
  66. 66.
    Saha B, Freer S, Bothast R (1994) Production, purification and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Appl Env Microbiol 60:3774–3780 Google Scholar
  67. 67.
    Sakon J, Adney W, Himmel M, Thomas S, Karplus P (1996) Crystal structure of thermostable family 5 endoglucanase EI from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35:10648–10660 CrossRefGoogle Scholar
  68. 68.
    Sarker M, Ilias M, Mozammel H (1998) Charaterization of xylanase and CMCase from Rhizomucor pusillus. Bangladesh J Microbiol 15(2):41–47 Google Scholar
  69. 69.
    Sassner P, Galbe M, Zacchi G (2006) Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated salix at high dry-matter content. Enzyme Microb Technol 39:756–762 CrossRefGoogle Scholar
  70. 70.
    Shepherd M, Tong C, Cole A (1981) Substrate specificity and mode of action of the cellulases from the thermophilic fungus Thermoascus aurantiacus. Biochem J 193:67–84 Google Scholar
  71. 71.
    Shoemaker S, Watt K, Tsikovsky G, Cox R (1983) Characterization and properties of cellulases purified from Trichoderma reesei strain L27. Bio/Technology 1:687–690 CrossRefGoogle Scholar
  72. 72.
    Stenberg K, Bollok M, Reczey K, Galbe M, Zacchi G (2000) Effect of substrate and cellulose concentration on simultaneous saccharification and fermentation of steam pretreated softwood for ethanol production. Biotechnol Bioeng 68:204–210 CrossRefGoogle Scholar
  73. 73.
    Ståhlberg J (1991) Functional organization of cellulases from Trichoderma reesei. PhD Thesis, Uppsala University, Sweden Google Scholar
  74. 74.
    Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999) Molecular cloning and expression of the novel fungal β-glucosidase genes from Humicola grisea and Trichoderma reesei. J Biochem 125:728–736 Google Scholar
  75. 75.
    Tenkanen M, Siika-aho M (2000) An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 75:149–161 CrossRefGoogle Scholar
  76. 76.
    Te'o V, Saul D, Bergquist P (1995) CelA, another gene coding for a multidomain cellulases from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43:291–296 CrossRefGoogle Scholar
  77. 77.
    Tomme P, Heriben V, Claeyssens M (1990) Adsorption of two cellobiohydrolases from Trichoderma reesei to Avicel: Evidence for exo–exo synergism and possible “loose complex” formation. Biotechnol Lett 127:525–530 CrossRefGoogle Scholar
  78. 78.
    Tuohy M, Walsh J, Murray P, Claeyssens M, Cuffe M, Savage A, Coughlan M (2002) Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochem Biophys Acta 1596:366–380 CrossRefGoogle Scholar
  79. 79.
    Venturi L, Polizeli M, Terenzi H, Furriel R, Jorge J (2002) Extracellular β-d-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some properties. J Basic Microbiol 42:55–66 CrossRefGoogle Scholar
  80. 80.
    Väljamäe P, Sild V, Petterson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolase I and II is consistent with a cellulose surface – erosion model. Eur J Biochem 253:469–475 CrossRefGoogle Scholar
  81. 81.
    Wright JD, Wyman CE, Grohmann K (1988) Simultaneous saccharification and fermentation of lignocellulose: process evaluation. Appl Biochem Biotechnol 18:75–90 CrossRefGoogle Scholar
  82. 82.
    Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile Anaerocellum thermophilum with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 143:3537–3542 CrossRefGoogle Scholar
  83. 83.
    Öhgren K, Vehmaanperä J, Siika-aho M, Galbe M, Viikari L, Zacchi G (2007) High temperature enzymatic hydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb Technol 40:607–613 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Liisa Viikari
    • 1
  • Marika Alapuranen
    • 2
  • Terhi Puranen
    • 2
  • Jari Vehmaanperä
    • 2
  • Matti Siika-aho
    • 3
  1. 1.University of HelsinkiHelsinkiFinland
  2. 2.ROALRajamäkiFinland
  3. 3.VTT Technical Research Centre of FinlandEspooFinland

Personalised recommendations