Biofuels pp 303-327 | Cite as

Process Engineering Economics of Bioethanol Production

  • Mats Galbe
  • Per Sassner
  • Anders Wingren
  • Guido Zacchi
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 108)

Abstract

This work presents a review of studies on the process economics of ethanol production from lignocellulosic materials published since 1996. Our objective was to identify the most costly process steps and the impact of various parameters on the final production cost, e.g. plant capacity, raw material cost, and overall product yield, as well as process configuration. The variation in estimated ethanol production cost is considerable, ranging from about 0.13 to 0.81 US$ per liter ethanol. This can be explained to a large extent by actual process differences and variations in the assumptions underlying the techno-economic evaluations. The most important parameters for the economic outcome are the feedstock cost, which varied between 30 and 90 US$ per metric ton in the papers studied, and the plant capacity, which influences the capital cost. To reduce the ethanol production cost it is necessary to reach high ethanol yields, as well as a high ethanol concentration during fermentation, to be able to decrease the energy required for distillation and other downstream process steps. Improved pretreatment methods, enhanced enzymatic hydrolysis with cheaper and more effective enzymes, as well as improved fermentation systems present major research challenges if we are to make lignocellulose-based ethanol production competitive with sugar- and starch-based ethanol. Process integration, either internally or externally with other types of plants, e.g. heat and power plants, also offers a way of reducing the final ethanol production cost.

Bioethanol production Biomass Flowsheeting Process economics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soccol CR, Vandenberghe LPS, Costa B, Woiciechowski AL, de Carvalho JC, Medeiros ABP, Francisco AM, Bonomi LJ (2005) J Sci Ind Res 64:879 Google Scholar
  2. 2.
    Mantell GJ (2007) Chem Eng News 85:4 Google Scholar
  3. 3.
    Rosentrater KA, Muthukumarappan K (2006) Int Sugar J 108:648 Google Scholar
  4. 4.
    Gulati M, Kohlmann K, Ladisch MR, Hespell R, Bothast RJ (1996) Bioresour Technol 58:253 CrossRefGoogle Scholar
  5. 5.
    Bothast RJ, Schlicher MA (2005) Appl Microbiol Biotechnol 67:19 CrossRefGoogle Scholar
  6. 6.
    USDepartment of Energy (2006) Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibilty of a billion-ton annual supply. Report ORNL/TM-2005/66. US Department of Energy, Washington DC, USA Google Scholar
  7. 7.
    Gray KA, Zhao L, Emptage M (2006) Curr Opin Chem Biol 10:141 CrossRefGoogle Scholar
  8. 8.
    Herrera S (2006) Nat Biotechnol 24:755 CrossRefGoogle Scholar
  9. 9.
    European Union (2006) Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. ISSN: 1725-2423. European Union, Brussels, Belgium Google Scholar
  10. 10.
    Keller FA (1996) Integrated bioprocess development. In: Wyman CE (ed) Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington DC, p 351 Google Scholar
  11. 11.
  12. 12.
  13. 13.
    Abengoa Bioenergy Corp (2006) http://www.abengoabioenergy.com/about/index.cfm?page=5&lang=1&headline=28 .Abengoa Bioenergy Corp, USA
  14. 14.
    Abengoa Bioenergy Corp (2006) http://www.abengoabioenergy.com/about/index.cfm?page=5&lang=1&headline=30 .Abengoa Bioenergy Corp, USA
  15. 15.
    Iogen Corp (2006) http://www.iogen.ca/company/facilities/index.html . Iogen Corp, Canada
  16. 16.
    Wooley RJ, Ruth MF, Sheehan J, Ibsen K (1999) NREL/TP-580-26157 Google Scholar
  17. 17.
    Wingren A (2005) Ethanol from Softwood: Techno-Economic Evaluation for Development of the Enzymatic Process (PhD thesis). Lund University, Sweden Google Scholar
  18. 18.
    McAloon A, Taylor F, Yee W, Ibsen K, Wooley RJ (2000) NREL/TP-580-28893 Google Scholar
  19. 19.
    Alzate CAC, Toro OJS (2006) Energy 31:2447 CrossRefGoogle Scholar
  20. 20.
    Sassner P, Galbe M, Zacchi G (2006) Biomass Bioenergy (in press) Google Scholar
  21. 21.
  22. 22.
    Wooley R, Putsche V (1996) Development of an ASPEN PLUS physical property database for biofuel components. NREL, Golden, CO, USA Google Scholar
  23. 23.
    Lynd LR, Elander TE, Wyman CE (1996) Appl Biochem Biotechnol 57/58:741 CrossRefGoogle Scholar
  24. 24.
    Stone K, Lynd LR (1995) 16th Symp Biotechnol Fuels Chemicals, p 569 Google Scholar
  25. 25.
    So KO, Brown RC (1999) Appl Biochem Biotechnol 77–79:633 CrossRefGoogle Scholar
  26. 26.
    Aden A, Ruth MF, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) NREL/TP-510-32438 Google Scholar
  27. 27.
    Bohlmann G (2006) Ind Biotechnol 2:14 CrossRefGoogle Scholar
  28. 28.
    US Department of Energy (2003) Road map for agricultural biomass feedstock supply in the US. US Dept of Energy, Washington DC, USA Google Scholar
  29. 29.
    Swedish Energy Agency (2005) Energy in Sweden. Facts and figures 2005. Swedish Energy Agency, Eskilstuna, Sweden Google Scholar
  30. 30.
    Eggeman T, Elander RT (2005) Bioresour Technol 96:2019 CrossRefGoogle Scholar
  31. 31.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959 CrossRefGoogle Scholar
  32. 32.
    Söderström J, Pilcher L, Galbe M, Zacchi G (2002) Appl Biochem Biotechnol 98–100:5 CrossRefGoogle Scholar
  33. 33.
    Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Biomass Bioeng 24:475 CrossRefGoogle Scholar
  34. 34.
    Nguyen QA, Tucker MP, Keller FA, Eddy CK (2000) Appl Biochem Biotechnol 84–86:561 CrossRefGoogle Scholar
  35. 35.
    Wingren A, Soderstrom J, Galbe M, Zacchi G (2004) Biotechnol Prog 20:1421 CrossRefGoogle Scholar
  36. 36.
    Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Biomass Bioeng 28:384 CrossRefGoogle Scholar
  37. 37.
    Fransson G, Lindstedt J, Sundlöf L, Wiklund K-G (2000) Dilute Acid Hydrolysis of Cellulose on Pilot and Full scale. Energicentrum Norr, Örnsköldsvik, Sweden (in Swedish) Google Scholar
  38. 38.
    Wingren A, Galbe M, Zacchi G (2003) Biotechnol Prog 19:1109 CrossRefGoogle Scholar
  39. 39.
    Wright JD (1988) Chem Eng Prog 84:62 Google Scholar
  40. 40.
    Tucker MP, Kim KH, Newman MM, Nguyen QA (2003) Appl Biochem Biotechnol 105–108:165 CrossRefGoogle Scholar
  41. 41.
    Varga E, Klinke HB, Réczey K, Thomsen AB (2004) Biotechnol Bioeng 88:567 CrossRefGoogle Scholar
  42. 42.
    Sassner P, Galbe M, Zacchi G (2006) Enzyme Microb Technol 39:756 CrossRefGoogle Scholar
  43. 43.
    Lissens G, Klinke H, Verstraete W, Ahring B, Thomsen AB (2004) J Chem Technol Biotechnol 79:889 CrossRefGoogle Scholar
  44. 44.
    Kadam KL, Wooley R, Aden A, Nguyen QA, Yancey MA, Ferraro FM (2000) Biotechnol Prog 16:947 CrossRefGoogle Scholar
  45. 45.
    Enze M (2006) Progr Chem 18:132 Google Scholar
  46. 46.
    Peterson JBD (2006) Int Sugar J 108:177 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mats Galbe
    • 1
  • Per Sassner
    • 1
  • Anders Wingren
    • 2
  • Guido Zacchi
    • 1
  1. 1.Department of Chemical EngineeringLund UniversityLundSweden
  2. 2.SEKAB E-TechnologyÖrnsköldsvikSweden

Personalised recommendations