Biofuels pp 205-235

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 108)

Consolidated Bioprocessing for Bioethanol Production Using Saccharomyces cerevisiae

  • Willem H. van Zyl
  • Lee R. Lynd
  • Riaan den Haan
  • John E. McBride
Chapter

Abstract

Consolidated bioprocessing (CBP) of lignocellulose to bioethanol refers to the combining of the four biological events required for this conversion process (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential breakthrough for low-cost biomass processing. Although no natural microorganism exhibits all the features desired for CBP, a number of microorganisms, both bacteria and fungi, possess some of the desirable properties. This review focuses on progress made toward the development of baker's yeast (Saccharomyces cerevisiae) for CBP. The current status of saccharolytic enzyme (cellulases and hemicellulases) expression in S. cerevisiae to complement its natural fermentative ability is highlighted. Attention is also devoted to the challenges ahead to integrate all required enzymatic activities in an industrial S. cerevisiae strain(s) and the need for molecular and selection strategies pursuant to developing a yeast capable of CBP.

Consolidated bioprocessing Cellulolytic yeast One-step bioethanol production Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbiol Mol Biol Rev 66:506 Google Scholar
  2. 2.
    Lynd LR (1996) Ann Rev Energy Environ 21:403 Google Scholar
  3. 3.
    Lynd LR, Weimer PJ, Wolfaardt G, Zhang Y-HP (2006) Cellulose hydrolysis by Clostridium thermocellum: a microbial perspective. In: Kataeva IA (ed) Cellulosome. Nova Science, Hauppauge, NY, USA, p 95 Google Scholar
  4. 4.
    Biomass Program multi-year technical plan, Biomass Program, US DOE, Washington, DC (2004) http://www.eere.energy.gov/biomass/
  5. 5.
    Greene N, Celik FE, Dale B, Jackson M, Jayawardhana K, Jin H, Larson ED, Laser M, Lynd L, MacKenzie D, Mark J, McBride J, McLaughlin S, Saccardi D (2004) Growing energy: how biofuels can help end America's oil dependence. http://www.bioproducts-bioenergy.gov/pdfs/NRDC-Growing-Energy-Final.3.pdf
  6. 6.
    Breaking the biological barriers to cellulosic ethanol: a joint research agenda. A research roadmap resulting from the Biomass to Biofuels Workshop, 7–9 December 2005, Rockville, MD. US DOE, DOE/SC-0095, Washington, DC (2006) http://www.genomicsgtl.energy.gov/biofuels/b2bworkshop.shtml
  7. 7.
    Lu YP, Zhang Y-HP, Lynd LR (2006) Proc Natl Acad Sci USA 103:16165 Google Scholar
  8. 8.
    Zhang Y-HP, Lynd LR (2005) Proc Natl Acad Sci USA 102:7321 Google Scholar
  9. 9.
    Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Curr Opin Biotechnol 16:577 Google Scholar
  10. 10.
    Demain AL, Newcomb M, Wu JHD (2005) Microbiol Mol Biol Rev 69:124 Google Scholar
  11. 11.
    Panagiotou G, Christakopoulos P, Grotkjaer T, Olsson L (2006) Metab Eng 8:474 Google Scholar
  12. 12.
    Stevenson DM, Weimer PJ (2002) Appl Microbiol Biotechnol 59:721 Google Scholar
  13. 13.
    Panagiotou G, Villas-Boas SG, Christakopoulos P, Nielsen J, Olsson L (2005) J Biotechnol 115:425 Google Scholar
  14. 14.
    Lawford HG, Rousseau JD (2002) Appl Biochem Biotechnol 98–100:429 Google Scholar
  15. 15.
    Mohagheghi A, Evans K, Chou YC, Zhang M (2002) Appl Biochem Biotechnol 98–100:885 Google Scholar
  16. 16.
    Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Biotechnol Prog 15:855 Google Scholar
  17. 17.
    Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram LO, Preston JF, Shanmugam KT (2001) J Bacteriol 183:2979 Google Scholar
  18. 18.
    Dien BS, Cotta MA, Jeffries TW (2003) Appl Microbiol Biotechnol 63:258 Google Scholar
  19. 19.
    Wood BE, Yomano LP, York SW, Ingram LO (2005) Biotechnol Prog 21:1366 Google Scholar
  20. 20.
    Slininger PJ, Bolen PL, Kurtzman CP (1987) Enzyme Microb Technol 9:5 Google Scholar
  21. 21.
    Prior BA, Kilian SG, Du Preez JC (1989) Process Biochem 24:21 Google Scholar
  22. 22.
    Hammond JRM (1993) Brewer's yeast. In: Rose AH, Harrison JS (eds) The yeasts, vol 5: yeast technology, 2nd edn. Academic, London, p 7 Google Scholar
  23. 23.
    Harrison JS (1993) Food and fodder yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 5: yeast technology, 2nd edn. Academic, London, p 399 Google Scholar
  24. 24.
    Ingledew WM (1993) Yeast for production of fuel ethanol. In: Rose AH, Harrison JS (eds) The yeasts, vol 5: yeast technology, 2nd edn. Academic, London, p 245 Google Scholar
  25. 25.
    Kunkee RE, Bisson LF (1993) Wine-making yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 5: yeast technology, 2nd edn. Academic, London, p 698 Google Scholar
  26. 26.
    Zaldivar J, Nielsen J, Olsson L (2001) Appl Microbiol Biotechnol 56:17 Google Scholar
  27. 27.
    Piskur J, Langkjaer RB (2004) Mol Microbiol 53:381 Google Scholar
  28. 28.
    Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) Trends Genet 22:183 Google Scholar
  29. 29.
    Verstrepen KJ, Iserentant D, Malcorps P, Derdelinckx G, Van Dijck P, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Trends Biotechnol 22:531 Google Scholar
  30. 30.
    Klinke HB, Thomsen AB, Ahring BK (2004) Appl Microbiol Biotechnol 66:10 Google Scholar
  31. 31.
    van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, Van Dijken JP, Pronk JT (2006) Antonie van Leeuwenhoek 90:391 Google Scholar
  32. 32.
    Aristidou A, Penttilä M (2000) Curr Opin Biotechnol 11:187 Google Scholar
  33. 33.
    Jeffries TW (2006) Curr Opin Biotechnol 17:320 Google Scholar
  34. 34.
    Hahn-Hägerdal B (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Engin Biotechnol, in this volume, Springer, Heidelberg Google Scholar
  35. 35.
    Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Engin Biotechnol, in this volume. Springer, Heidelberg Google Scholar
  36. 36.
    Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, Van Zyl WH, Cordero OR, Jonsson LJ (2001) Adv Biochem Eng Biotechnol 73:53 Google Scholar
  37. 37.
    Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, Van Dijken JP, Pronk JT (2005) FEMS Yeast Res 5:925 Google Scholar
  38. 38.
    Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, Van Dijken JP, Pronk JT (2005) FEMS Yeast Res 5:399 Google Scholar
  39. 39.
    Wahlbom CF, Van Zyl WH, Jönsson LJ, Hahn-Hägerdal B, Cordero Otero RR (2003) FEMS Yeast Res 3:319 Google Scholar
  40. 40.
    Karhumaa K, Wiedemann B, Hahn-Hägerdal B, Boles E, Gorwa-Grauslund MF (2006) Microb Cell Fact 5:1 Google Scholar
  41. 41.
    Ostergaard S, Olsson L, Nielsen J (2000) Microbiol Mol Biol Rev 64:34 Google Scholar
  42. 42.
    Stambuk BU, Alves SL Jr, Hollatz C, Zastrow CR (2006) Lett Appl Microbiol 43:370 Google Scholar
  43. 43.
    Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH (2005) J Biotechnol 120:284 Google Scholar
  44. 44.
    McBride JE, Zietsman JJ, Van Zyl WH, Lynd LR (2005) Enzyme Microb Technol 37:93 Google Scholar
  45. 45.
    Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Appl Microbiol Biotechnol 72:1136 Google Scholar
  46. 46.
    Klein CJ, Rasmussen JJ, Ronnow B, Olsson L, Nielsen J (1999) J Biotechnol 68:197 Google Scholar
  47. 47.
    Penttilä ME, Andre L, Lehtovaara P, Bailey M, Teeri TT, Knowles JK (1988) Gene 63:103 Google Scholar
  48. 48.
    Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JK, Teeri TT (1992) Proteins 14:475 Google Scholar
  49. 49.
    Den Haan R, McBride JE, La Grange DC, Lynd LR, Van Zyl WH (2007) Enzyme Microb Technol, doi:10.1016/j.enzmictec.2006.09.022 Google Scholar
  50. 50.
    Van Rensburg P, Van Zyl WH, Pretorius IS (1996) Curr Genet 30:246 Google Scholar
  51. 51.
    Van Rensburg P, Van Zyl WH, Pretorius IS (1998) Yeast 14:67 Google Scholar
  52. 52.
    Petersen SH, Van Zyl WH, Pretorius IS (1998) Biotechnol Tech 12:615 Google Scholar
  53. 53.
    Koch A, Weigel CTO, Schulz G (1993) Gene 124:57 Google Scholar
  54. 54.
    Hong J, Tamaki H, Yamamoto K, Kumagai H (2003) Biotechnol Lett 25:657 Google Scholar
  55. 55.
    Takada G, Kawaguchi T, Sumitani J, Arai M (1998) Biosci Biotechnol Biochem 62:1615 Google Scholar
  56. 56.
    Curry C, Gilkes N, Oneill G, Miller RC, Skipper N (1988) Appl Environ Microbiol 54:476 Google Scholar
  57. 57.
    Wong WKR, Curry C, Parekh RS, Parekh SR, Wayman M, Davies RW, Kilburn DG, Skipper N (1988) Biotechnology 6:713 Google Scholar
  58. 58.
    Zurbriggen B, Bailey MJ, Penttilä ME, Poutanen K, Linko M (1990) J Biotechnol 13:267 Google Scholar
  59. 59.
    Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Appl Environ Microbiol 70:1207 Google Scholar
  60. 60.
    Chow CM, Yague E, Raguz S, Wood DA, Thurston CF (1994) Appl Environ Microbiol 60:2779 Google Scholar
  61. 61.
    Van Arsdell JN, Kwok S, Schweickart VL, Ladner MB, Gelfand DH, Innis MA (1987) Biotechnology 5:60 Google Scholar
  62. 62.
    Penttilä ME, Andre L, Saloheimo M, Lehtovaara P, Knowles JKC (1987) Yeast 3:175 Google Scholar
  63. 63.
    Zurbriggen BD, Penttilä ME, Viikari L, Bailey MJ (1991) J Biotechnol 17:133 Google Scholar
  64. 64.
    Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Appl Environ Microbiol 68:5136 Google Scholar
  65. 65.
    Saloheimo A, Henrissat B, Hoffren AM, Teleman O, Penttilä M (1994) Mol Microbiol 13:219 Google Scholar
  66. 66.
    Saloheimo M, NakariSetala T, Tenkanen M, Penttilä M (1997) Eur J Biochem 249:584 Google Scholar
  67. 67.
    Hong J, Tamaki H, Akiba S, Yamamoto K, Kumagai H (2001) J Biosci Bioeng 92:434 Google Scholar
  68. 68.
    Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Appl Environ Microbiol 64:4857 Google Scholar
  69. 69.
    Ooi T, Minamiguchi K, Kawaguchi T, Okada H, Murao S, Arai M (1994) Biosci Biotechnol Biochem 58:954 CrossRefGoogle Scholar
  70. 70.
    Minamiguchi K, Ooi T, Kawaguchi T, Okada H, Murao S, Arai M (1995) J Ferment Bioeng 79:363 Google Scholar
  71. 71.
    Skipper N, Sutherland M, Davies RW, Kilburn D, Miller RC, Warren A, Wong R (1985) Science 230:958 Google Scholar
  72. 72.
    Mochizuki D, Miyahara K, Hirata D, Matsuzaki H, Hatano T, Fukui S, Miyakawa T (1994) J Ferment Bioeng 77:468 Google Scholar
  73. 73.
    Chung DK, Shin DH, Kim BW, Nam JK, Han IS, Nam SW (1997) Biotechnol Lett 19:503 Google Scholar
  74. 74.
    Sacco M, Millet J, Aubert JP (1984) Ann Microbiol 135:485 Google Scholar
  75. 75.
    Van Rensburg P, Van Zyl WH, Pretorius IS (1994) Curr Genet 27:17 Google Scholar
  76. 76.
    Van Rensburg P, Van Zyl W, Pretorius IS (1997) J Biotechnol 55:43 Google Scholar
  77. 77.
    Nakatani F, Kawaguchi T, Takada G, Sumitani J, Moriyama Y, Arai M (2000) Biosci Biotechnol Biochem 64:1238 Google Scholar
  78. 78.
    Cho KM, Yoo YJ, Kang HS (1999) Enzyme Microb Technol 25:23 Google Scholar
  79. 79.
    Perez-Gonzalez JA, Gonzalez R, Querol A, Sendra J, Ramon D (1993) Appl Environ Microbiol 59:2801 Google Scholar
  80. 80.
    Cantwell BA, Brazil G, Murphy N, McConnell DJ (1986) Curr Genet 11:65 Google Scholar
  81. 81.
    Hinchliffe E, Box WG (1984) Curr Genet 8:471 Google Scholar
  82. 82.
    Hong SS, Kang HS (1998) J Biochem Mol Biol 31:123 Google Scholar
  83. 83.
    Honda H, Iijima S, Kobayashi T (1988) Appl Biochem Biotechnol 28:57 Google Scholar
  84. 84.
    Parvez S, Rajoka MI, Fariha F, Malik KA (1994) Folia Microbiol 39:251 Google Scholar
  85. 85.
    Gao J, Hooker BS, Skeen RS, Anderson DB (2002) ACS Symp Ser 823:1451 Google Scholar
  86. 86.
    Xie Q, Jimenez A, Ramon D, Perezgonzalez JA (1995) J Inst Brew 101:459 Google Scholar
  87. 87.
    Jackson EA, Ballance GM, Thomsen KK (1986) Carlsberg Res Commun 51:445 Google Scholar
  88. 88.
    Leclerc M, Chemardin P, Arnaud A, Ratomahenina R, Galzy P, Gerbaud C, Raynal A, Guerineau M (1987) Biotechnol Appl Biochem 9:410 Google Scholar
  89. 89.
    Machida M, Ohtsuki I, Fukui S, Yamashita I (1988) Appl Environ Microbiol 54:3147 Google Scholar
  90. 90.
    Skory CD, Freer SN, Bothast RJ (1996) Curr Genet 30:417–422 Google Scholar
  91. 91.
    Adam AC, Rubiotexeira M, Polaina J (1995) Yeast 11:395 Google Scholar
  92. 92.
    Sanchez-Torres P, Gonzalez-Candelas L, Ramon D (1998) J Agric Food Chem 46:354 Google Scholar
  93. 93.
    Rajoka MI, Parvez S, Malik KA (1992) Biotechnol Lett 14:1001 Google Scholar
  94. 94.
    Cummings C, Fowler T (1996) Curr Genet 29:227 Google Scholar
  95. 95.
    Pack SP, Park K, Yoo YJ (2002) Biotechnol Lett 24:1919 Google Scholar
  96. 96.
    Kohchi C, Tohe A (1986) Mol Gen Genet 203:89 Google Scholar
  97. 97.
    Penttilä ME, Nevalainen KMH, Raynal A, Knowles JKC (1984) Mol Gen Genet 194:494 Google Scholar
  98. 98.
    Raynal A, Guerineau M (1984) Mol Gen Genet 195:108 Google Scholar
  99. 99.
    Bailey MJ, Siika-aho M, Valkeajarvi A, Penttilä ME (1993) Appl Biochem 17:65 Google Scholar
  100. 100.
    Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Appl Biochem Biotechnol 67:577 Google Scholar
  101. 101.
    Reiter WD (2002) Curr Opin Plant Biol 5:536 Google Scholar
  102. 102.
    Den Haan R, Rose SH, Lynd LR, Van Zyl WH (2006) Metab Eng 9:87 Google Scholar
  103. 103.
    Wood TM (1992) Biochem Soc Trans 20:46 Google Scholar
  104. 104.
    Kim Y-J, Oh Y-K, Kang W, Lee EY, Park S (2005) J Ind Microbiol Biotechnol 32:402 Google Scholar
  105. 105.
    Romanos MA, Makoff AJ, Fairweather NF, Beesley KM, Slater DE, Rayment FB, Payne MM, Clare JJ (1991) Nucleic Acids Res 19:1461 Google Scholar
  106. 106.
    Park EH, Shin YM, Lim YY, Kwon TH, Kim DH, Yang MS (2000) J Biotechnol 81:35 Google Scholar
  107. 107.
    Stälbrand H, Saloheimo A, Vehmaanpera J, Henrissat B, Penttilä M (1995) Appl Environ Microbiol 61:1090 Google Scholar
  108. 108.
    Ximenes EA, Chen H, Kataeva IA, Cotta MA, Felix CR, Ljungdahl LG, Li XL (2005) Can J Microbiol 51:559 Google Scholar
  109. 109.
    Kormelink FJM, Gruppen H, Wood TM, Beldman G (1992) Mode of action of the xylan-degrading enzymes from Aspergillus awamori. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, p 141 Google Scholar
  110. 110.
    Sunna A, Antranikian G (1997) Crit Rev Biotechnol 17:39 Google Scholar
  111. 111.
    Li K, Azadi P, Collins R, Tolan J, Kim JS, Eriksson KL (2000) Enzyme Microb Technol 27:89 Google Scholar
  112. 112.
    Moreau A, Durand S, Morosoli R (1992) Gene 116:109 Google Scholar
  113. 113.
    Crous JM, Pretorius IS, Van Zyl WH (1995) Curr Genet 28:467 Google Scholar
  114. 114.
    La Grange DC, Pretorius IS, Van Zyl WH (1996) Appl Environ Microbiol 62:1036 Google Scholar
  115. 115.
    La Grange DC, Pretorius IS, Claeyssens M, Van Zyl WH (2001) Appl Environ Microbiol 67:5512 Google Scholar
  116. 116.
    Li X-L, Ljungdahl LG (1996) Appl Environ Microbiol 62:209 Google Scholar
  117. 117.
    Margolles-Clark E, Tenkanen M, Nakari-Setala T, Penttilä M (1996) Appl Environ Microbiol 62:3840 Google Scholar
  118. 118.
    La Grange DC, Pretorius IS, Van Zyl WH (1997) Appl Microbiol Biotechnol 47:262 Google Scholar
  119. 119.
    Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Appl Environ Microbiol 70:5407 Google Scholar
  120. 120.
    De Wet BJM, Van Zyl WH, Prior BA (2006) Enzyme Microb Technol 38:649 Google Scholar
  121. 121.
    Crous JM, Pretorius IS, Van Zyl WH (1996) Appl Microbiol Biotechnol 46:256 Google Scholar
  122. 122.
    Sanchez-Torres P, Gonzalez-Candelas L, Ramon D (1996) FEMS Microbiol Lett 145:189 Google Scholar
  123. 123.
    Gonzalez-Candelas L, Gil JV, Lamuela-Raventos RM, Ramon D (2000) Int J Food Microbiol 59:179 Google Scholar
  124. 124.
    Setati ME, Ademark P, Van Zyl WH, Hahn-Hägerdal B, Stälbrand H (2001) Protein Expr Purif 21:105 Google Scholar
  125. 125.
    Margolles-Clark E, Tenkanen M, Luonteri E, Penttilä M (1996) Eur J Biochem 240:104 Google Scholar
  126. 126.
    Pauly M, Andersen LN, Kauppinen S, Kofod LV, York WS, Albersheim P, Darvill A (1999) Glycobiology 9:93 Google Scholar
  127. 127.
    Sampedro J, Sieiro C, Revilla G, Gonzalez-Villa T, Zarra I (2001) Plant Physiol 126:910 Google Scholar
  128. 128.
    La Grange DC, Claeyssens M, Pretorius IS, Van Zyl WH (2000) Appl Microbiol Biotechnol 54:195 Google Scholar
  129. 129.
    Luttig M, Pretorius IS, Van Zyl WH (1997) Biotechnol Lett 19:411 Google Scholar
  130. 130.
    Fujita Y, Katahira S, Ueda M, Tanaka A, Okada H, Morikawa Y, Fukuda H, Kondo A (2002) J Mol Catal 17:189 Google Scholar
  131. 131.
    Biely P (1985) Trends Biotechnol 3:286 Google Scholar
  132. 132.
    Arnold FH, Volkov AA (1999) Curr Opin Chem Biol 3:54 Google Scholar
  133. 133.
    Yuan L, Kurek I, English J, Keenan R (2005) Microbiol Mol Biol Rev 69:373 Google Scholar
  134. 134.
    Wang BD, Chen DC, Kuo TT (2001) Appl Microbiol Biotechnol 55:712 Google Scholar
  135. 135.
    Becerra M, Prado SD, Cerdan E, Siso MIG (2001) Biotechnol Lett 23:33 Google Scholar
  136. 136.
    Sleep D, Belfield GP, Ballance DJ, Steven J, Jones S, Evans LR, Moir PD, Goodey AR (1991) Biotechnology 9:183 Google Scholar
  137. 137.
    Aho S, Arffman A, Korhola M (1996) Appl Microbiol Biotechnol 46:36 Google Scholar
  138. 138.
    Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T (2005) Biomol Eng 22:89 Google Scholar
  139. 139.
    Murashima K, Kosugi A, Doi RH (2002) Mol Microbiol 45:617 Google Scholar
  140. 140.
    Van den Burg B, Vriend G, Veltman OR, Eijsink VGH (1998) Proc Natl Acad Sci USA 95:2056 Google Scholar
  141. 141.
    Zhang YHP, Himmel ME, Mielenz JR (2006) Biotechnol Adv 24:452 Google Scholar
  142. 142.
    Zhang YHP, Lynd LR (2004) Biotechnol Bioeng 88:797 Google Scholar
  143. 143.
    Dykhuizen D, Hartl D (1983) Microbiol Rev 47:150 Google Scholar
  144. 144.
    Harder W, Kuenen J, Martin A (1977) J Appl Bacteriol 43:1 Google Scholar
  145. 145.
    Sauer U (2001) Adv Biochem Eng Biotechnol 73:129 Google Scholar
  146. 146.
    Brown J, Brown P, Clarke P (1969) J Gen Microbiol 57:273 Google Scholar
  147. 147.
    Folk W, Berg P (1971) J Mol Biol 58:595 Google Scholar
  148. 148.
    Gasent-Ramirez J, Benitez T (1997) Appl Environ Microbiol 63:4800 Google Scholar
  149. 149.
    Hegemen G, Rosenberg S (1970) Ann Rev Microbiol 24:429 Google Scholar
  150. 150.
    Jackson E, Yanofsky C (1973) J Bacteriol 116:33 Google Scholar
  151. 151.
    Rigby P, Burleigh B, Hartley B (1974) Nature 251:200 Google Scholar
  152. 152.
    Schneider K, Jakel G, Hoffmann R, Giffhorn F (1995) Microbiology 141:1865 CrossRefGoogle Scholar
  153. 153.
    Tidswell E, Thompson A, Morris J (1991) Appl Microbiol Biotechnol 35:317 Google Scholar
  154. 154.
    Horiuchi T, Tomizawa J, Novick A (1962) Biochim Biophys Acta 55:152 Google Scholar
  155. 155.
    Silman NJ, Carver MA, Jones CW (1989) J Gen Microbiol 135:3153 Google Scholar
  156. 156.
    Attfield PV, Bell PJL (2006) FEMS Yeast Res 6:862 Google Scholar
  157. 157.
    Francis J, Hansche P (1973) Genetics 74:259 Google Scholar
  158. 158.
    Naki D, Paech C, Ganshaw G, Schellenberger V (1998) Appl Microbiol Biotechnol 49:290 Google Scholar
  159. 159.
    Lelieveld H (1982) Biotechnol Bioeng 24:1419 Google Scholar
  160. 160.
    Fan ZL, McBride JE, Van Zyl WH, Lynd LR (2005) Biotechnol Bioeng 92:35–44 Google Scholar
  161. 161.
    Bayer E, Kenig R, Lamed R (1983) J Bacteriol 156:818 Google Scholar
  162. 162.
    Becker J, Boles E (2003) Appl Environ Microbiol 69:4144 Google Scholar
  163. 163.
    Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) J Biotechnol 113:121 Google Scholar
  164. 164.
    Romanos MA, Scorer CA, Clare JJ (1992) Yeast 8:423 Google Scholar
  165. 165.
    Casey GP, Xiao W, Rank GH (1988) J Inst Brew 94:93 Google Scholar
  166. 166.
    Rothstein R (1991) Methods Enzymol 194:281 CrossRefGoogle Scholar
  167. 167.
    Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) Nucleic Acids Res 30:e23 Google Scholar
  168. 168.
    Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) Nucleic Acids Res 24:2519 Google Scholar
  169. 169.
    Johansson B, Hahn-Hägerdal B (2002) Yeast 19:225 Google Scholar
  170. 170.
    Johansson B, Hahn-Hägerdal B (2004) Methods Mol Biol 267:287 Google Scholar
  171. 171.
    Lopes TS, Hakkaart G-JAJ, Koerts BL, Raúe HA, Planta RJ (1991) Gene 105:83 Google Scholar
  172. 172.
    Lee FW, Da Silva NA (1997) Appl Microbiol Biotechnol 48:339 Google Scholar
  173. 173.
    Lopes TS, De Wijs IJ, Steenhauer SI, Verbakel J, Planta RJ (1996) Yeast 12:467 Google Scholar
  174. 174.
    Dujon B (1996) Trends Genet 12:263 Google Scholar
  175. 175.
    Parekh RN, Shaw MR, Wittrup KD (1996) Biotechnol Prog 12:16 Google Scholar
  176. 176.
    Kim MD, Rhee SK, Seo JH (2001) J Biotechnol 85:41 Google Scholar
  177. 177.
    Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U (2004) Biotechnol Bioeng 87:90 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Willem H. van Zyl
    • 1
  • Lee R. Lynd
    • 2
  • Riaan den Haan
    • 1
  • John E. McBride
    • 2
  1. 1.Department of MicrobiologyStellenbosch UniversityMatielandSouth Africa
  2. 2.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations