Biorefineries – Multi Product Processes

Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 105)

Abstract

The development of biorefineries represents the key for access to an integrated production of food, feed, chemicals, materials, goods, and fuels of the future [1]. Biorefineries combine the necessary technologies of the biogenic raw materials with those of intermediates and final products. The main focus is directed at the precursors carbohydrates, lignin, oils, and proteins and the combination between biotechnological and chemical conversion of substances. Currently the lignocellulosic feedstock biorefinery, green biorefinery, whole corn biorefinery, and the so-called two-platform concept are favored in research, development, and industrial implementation.

Biobased industrial products Biogenic raw material Biorefineries Green biorefinery Lignocellulosic feedstock biorefinery Two-platform concept Whole-crop biorefinery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Research Council (NRC, USA) (2000) Biobased Industrial Products: Priorities for Research and Commercialization. National Academic Press, Washington, DC Google Scholar
  2. 2.
    Kamm B, Kamm M, Soyez K (eds) (1998) Die Grüne Bioraffinerie/The Green Biorefinery. Technologiekonzept, 1st Int Symp Green Biorefinery/Grüne Bioraffinerie, October 1997, Neuruppin, Germany. Proceedings, Berlin, ISBN: 3-929-67206-5 Google Scholar
  3. 3.
    Narodoslawsky M (ed) (1999) Green Biorefinery 2nd Int Symp, October 13–14, 1999, Feldbach, Austria. Proceedings, SUSTAIN, Verein zur Koordination von Forschung über Nachhaltigkeit, Graz TU, Austria Google Scholar
  4. 4.
    Kamm B, Kamm M, Richter K, Linke B, Starke I, Narodoslawsky M, Schwenke KD, Kromus S, Filler G, Kuhnt M, Lange B, Lubahn U, Segert A, Zierke S (2000) Grüne BioRaffinerie Brandenburg—Beiträge zur Produkt- und Technologieentwicklung sowie Bewertung. Brandenburgische Umwelt Berichte, BUB 8,260-269, ISSN 1434-2375 Google Scholar
  5. 5.
    US-President (1999) Developing and Promoting Biobased Products and Bioenergy. Executive Order 13101/13134, William J. Clinton, The White House, August 12, 1999 www.newuse.org/EG/EG-20/20BioText.html Google Scholar
  6. 6.
    US-Congress (2000) Biomass Research and Development, Act of 2000, June Google Scholar
  7. 7.
    Biomass R&D, Technical Advisory Committee (2002) Vision for Bioenergy & Biobased Products in the United States, Washington, DC www.bioproducts-bioenergy.gov/pdfs/BioVision_03_Web.pdf Google Scholar
  8. 8.
    Biomass R&D, Technical Advisory Committee (2002) Roadmap for Biomass Technologies in the United States, Washington, DC www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf Google Scholar
  9. 9.
    European Parliament and Council (2003) Directive 2003/30/EC on the promotion of the use of biofuels or other renewable fuels for transport. Official Journal of the European Union L123/42, 17.05.2003, Brussels Google Scholar
  10. 10.
    Gesetz für den Vorrang erneuerbarer Energien (2000) Erneuerbare Energiegesetz, EEG/EnWGuaÄndG, 29.03.2000, BGBI, 305 Google Scholar
  11. 11.
    European Technology Platform for Sustainable Chemistry, Industrial Biotechnology Section (2005) www.suschem.org Google Scholar
  12. 12.
    US Department of Energy (DOE) (2005) 1st Int Biorefinery Workshop, July 20 and 21, Washington, DC, www.biorefineryworkshop.com Google Scholar
  13. 13.
    Zoebelin H (ed) (2001) Dictionary of Renewable Resources. Wiley, Weinheim Google Scholar
  14. 14.
    Morris DJ, Ahmed I (1992) The Carbohydrate Economy, Making Chemicals and Industrial Materials from Plant Matter. Institute of Local Self Reliance, Washington, DC Google Scholar
  15. 15.
    Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity Engineering, Biotechnol Progr 15:777–793 CrossRefGoogle Scholar
  16. 16.
    US Department of Agriculture (USDA) and US Department of Energy (DOE) (eds) (2005) Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. US Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN Google Scholar
  17. 17.
    Kamm B, Kamm M (2004) Principles of Biorefineries Mini-Review. Appl Microbiol Biotechnol 64:137–145 CrossRefGoogle Scholar
  18. 18.
    Kamm B, Kamm M, Gruber P (eds) (2006) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (ISBN: 3-527-31027-4) Google Scholar
  19. 19.
    Kamm B, Kamm M (2004) Biorefinery-Systems, Review. Chem Biochem Eng Q 18(1):1–6 Google Scholar
  20. 20.
    Röper H (2001) Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker. Mitteilung der Fachgruppe Umweltchemie und Ökotoxikologie der Gesellschaft Deutscher Chemiker 7(2):6–12 Google Scholar
  21. 21.
    Linko YY, Javanainen P (1996) Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzyme and Microbial Technol 19:118–123 CrossRefGoogle Scholar
  22. 22.
    Zielinska KJ, Stecka KM, Miecznikowski AH, Suterska AM (2000) Degradation of raw potato starch by the amylases of lactic acid bacteria. Pr Inst Lab Badaw Przem Spozyw 55:22–29 Google Scholar
  23. 23.
    Kamm B, Kamm M, Schmidt M, Starke I, Kleinpeter E (2006) Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis)-quantification of glucose. Chemosphere 62:97–105, (DOI:10.1016/j.chemosphere.2005.03.073) CrossRefGoogle Scholar
  24. 24.
    EuropaBio (2003) White Biotechnology, Gateway to a more Sustainable Future. EuropaBio, Lyon, April Google Scholar
  25. 25.
    BIO Biotechnology Industry Organisation (2004) New Biotech Tools for a Cleaner Environment—Industrial Biotechnology for Pollution Prevention, Resource Conservation and Cost Reduction http://www.bio.org/ind/pubs/cleaner2004/cleanerReport.pdf
  26. 26.
    DTI Global Watch Mission Report (2004) Impact of the industrial biotechnology on sutainability of the manufacturing base—the Japanese Perspective Google Scholar
  27. 27.
    Van Dyne DL (1999) Estimating the Economic Feasibility of Converting Ligno-Cellulosic Feedstocks to Ethanol and Higher Value Chemicals under the Refinery Concept: A Phase II Study, OR22072-58. University of Missouri Google Scholar
  28. 28.
    Van Dyne DL, Blasé MG, Clements LD (1999) A strategy for returning agriculture and rural America to long-term full employment using biomass refineries. In: Janeck J (ed) Perspectives on New Crops and New Uses. ASHS Press, Alexandria, Va, pp 114–123 Google Scholar
  29. 29.
    Werpy T, Petersen G (eds) (2004) Top Value Added Chemicals from Biomass. US Department of Energy, Office of Scientific and Technical Information, No.: DOE/GO-102004-1992 www.osti.gov/bridge Google Scholar
  30. 30.
    Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552 CrossRefGoogle Scholar
  31. 31.
    Werpy T, Frye J, Holladay J (2006) Succinic acid—a model building block for chemical production from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (vol 2, pp 367–379, ISBN: 3-527-31027-4) Google Scholar
  32. 32.
    Guettler MV, Jain MK, Rumler D (1996) Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US patent 5573931 (Nov 12) Google Scholar
  33. 33.
    Berglund KA, Elankovan P, Glassner DA (1991) Carboxylic acid purification and crystallization process. US patent 5034105 (July 23) Google Scholar
  34. 34.
    Chang HN, Chang YK, Kwon SH, Lee WG, Lee PC, Yoo IK, Lim SJ (2003) Method for manufacturing organic acid by high efficiency continuous fermentation. US patent 6596521 (July 22) Google Scholar
  35. 35.
    Lee PC, Lee SY, Hong SH, Chang HN, Park SC (2003) Biotechnol Lett 25:111–114 CrossRefGoogle Scholar
  36. 36.
    Frye JG, Zacher AH, Werpy TA, Wang Y (2005) Catalytic Preparation of Pyrrolidones from Renewable Resources. In: Sowa JR Jr (ed) Twentieth Conference on the Catalysis of Organic Reactions 2004. Hilton Head Island, S.C. Chemical Industries, CRC Press, Boca Raton, FL, 104:145–154 Google Scholar
  37. 37.
    Daneel HJ, Faurie R (Amino GmbH) (1994) Verfahren zur Herstellung von l-Äpfel- säure aus Fumarsäure. DE Patent 4424664 Google Scholar
  38. 38.
    Crosby J (1991) Synthesis of optically active compounds: a large scale perspective. Tetrahedron 47:4789–4846 CrossRefGoogle Scholar
  39. 39.
    Guerin P, Vert M, Braud C, Lenz RW (1985) Optically active poly(β-malic acid). Polym Bull 14:187–192 CrossRefGoogle Scholar
  40. 40.
    Leonard HR (1956) Levulinic acid as basic chemical raw material. J Ind Eng Chem 48:1331–1341 Leonard HR, US patent 2809203 (1958) CrossRefGoogle Scholar
  41. 41.
    NYSERDA (New York State Energy Research and Development Authority) (1998) Commerzialing Biomass Technologies in New York State. Producing a High Value Chemical from Biomass (Levulinic Acid). Project paper. Nyserda, Albany, New York (www.nyserda.org) Google Scholar
  42. 42.
    Richter K, Bertold C (1998) Biotechnological conversion of sugar and starchy crops into lactic acid. J Agr Eng Res 71(2):181–191 CrossRefGoogle Scholar
  43. 43.
    Shamala TR, Sreekantiah KR (1987) Degradation of starchy substrates by a crude enzyme preparation and utilization of the hydrolysates for lactic fermentation. Enzyme and Microbial Technol 9(12):726–729 CrossRefGoogle Scholar
  44. 44.
    Oh H, Wee YJ, Yun JS, Han SH, Jung S, Ryu HW (2005) Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technol 96(13):1492–1498 CrossRefGoogle Scholar
  45. 45.
    Xiaodong W, Xuan G, Rakshit SK (1997) Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnol Lett 19:841–843 CrossRefGoogle Scholar
  46. 46.
    Akerberg C, Zacchi G (2000) An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresource Technol 75:119–126 CrossRefGoogle Scholar
  47. 47.
    Kamm B, Kamm M, Richter K (1997) Entwicklung eines Verfahrens zur Konversion von hexosenhaltigen Rohstoffen zu biogenen Wirk- und Werkstoffen—Polylactid aus fermentiertem Roggenschrot über organische Aminiumlactate als alternative Kuppler biotechnischer und chemischer Stoffwandlungen. In: Chemie nachwachsender Rohstoffe. Tagungsband Wien, 9./10.09.1997. P.B. Czedik-Eysenberg/Österreichisches Bundesministerium für Umwelt (BMUJF) Wien, Österreich (pp 83–87, ISBN: 3-901-30571-8) Google Scholar
  48. 48.
    Nolasco-Hipolito C, Matsunaka T, Kobayashi G, Sonomoto K, Ishizaki A (2002) Synchronized fresh cell bioreactor system for continuous l-(+)-lactic acid production using Lactococcus lactis IO-1 in hydrolysed sago starch. J Biosci Bioeng 93(3):281–287 CrossRefGoogle Scholar
  49. 49.
    Andersen M, Kiel P (2000) Integrated utilisation of green biomass in the green biorefinery. Ind Crop Prod 11:129–137 CrossRefGoogle Scholar
  50. 50.
    Thomsen MH, Bech D, Kiel P (2004) Manufacturing of Stabilised Brown Juice for l-lysine production—from University Lab Scale over Pilot Scale to Industrial Production. Chem Biochem Eng Q 18(1):37–46 Google Scholar
  51. 51.
    Nancib N, Nancib A, Boudjelal A, Benslimane C, Blanchard F, Boudrant J (2001) The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Bioresource Technol 78(2):149–153 CrossRefGoogle Scholar
  52. 52.
    Grohmann K, Bothast RJ (1997) Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem 32(5):405–415 CrossRefGoogle Scholar
  53. 53.
    Anurada R, Suresh AK, Venkatesh KV (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem 35:367–375 CrossRefGoogle Scholar
  54. 54.
    Miura S, Arimura T, Hoshino M, Kojima M, Dwiarty L, Okabe M (2003) Optimization and scale-up of l-lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. J Biosci Bioeng 96(1):65–69 Google Scholar
  55. 55.
    Fukushima K, Sogo K, Miura S, Kimura Y (2004) Production of d-lactic acid by bacterial fermentation of rice starch. Macromol Biosci 4(11):1021–1027 CrossRefGoogle Scholar
  56. 56.
    Melzoch K, Votruba J, Habova V, Rychtera M (1997) Lactic acid production in a cell retention continuous culture using lignocellulosic hydrolysate as a substrate. J Biotechnol 56(1):25–31 CrossRefGoogle Scholar
  57. 57.
    Moldes AB, Alonso JL, Parajo JC (1999) Cogeneration of cellobiose and glucose from pretreated wood and bioconversion to lactic acid, A kinetic study. J Biosci Bioeng 87(6):787–792 CrossRefGoogle Scholar
  58. 58.
    Woiciechowski AL, Soccol CR, Ramos LP, Pandey A (1999) Experimental design to enhance the production of l-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation. Process Biochem 34(9):949–955 CrossRefGoogle Scholar
  59. 59.
    Park EY, Anh PN, Okuda N (2004) Bioconversion of waste office paper to l(+)-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresource Technol 93(1):77–83 CrossRefGoogle Scholar
  60. 60.
    Wee YJ, Yun JS, Park DH, Ryu HW (2004) Biotechnological production of l(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnol Lett 26(1):71–74 CrossRefGoogle Scholar
  61. 61.
    Payot T, Chemaly Z, Fick M (1999) Lactic acid production by Bacillus coagulans–kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme Microb Tech 24(3–4):191–199 CrossRefGoogle Scholar
  62. 62.
    Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73(1):25–34 CrossRefGoogle Scholar
  63. 63.
    Bulut S, Elibol M, Ozer D (2004) Effect of different carbon sources on l(+)-lactic acid production by Rhizopus oryzae. Bio Chem Eng J 21:33–37 Google Scholar
  64. 64.
    Bustos G, Moldes AB, Cruz JM, Dominguez JM (2004) Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. J Agr Food Chem 52:801–808 CrossRefGoogle Scholar
  65. 65.
    Taniguchi M, Tokunaga T, Horiuchi K, Hoshino K, Sakai K, Tanaka T (2004) Production of l-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Appl Microbiol Biotechnol 66(2):160–165 CrossRefGoogle Scholar
  66. 66.
    Siebold M, Rindfleisch D, Schügerl K, Friedling P von Joppien R, Röper H (1995) Comparison of the Production of Lactic Acid by Three Different Lactobacilli and its Recovery by Extraction and Electrodialysis. Process Biochem 30(1):81–95 CrossRefGoogle Scholar
  67. 67.
    von Friedling P, Schügerl K (1999) Recovery of lactic acid from aqueous model solutions and fermentation broths. Process Biochem 34(6–7):685–696 CrossRefGoogle Scholar
  68. 68.
    Cao X, Yun HS, Koo YM (2002) Recovery of l(+)-lactic acid by anion exchange resin Amberlite IRA-400. Bio Chem Eng J 11:189–196 Google Scholar
  69. 69.
    Bailly M (2002) Production of organic acids by bipolar electrodialysis, realizations and perspectives. Desalination 144:157–162 CrossRefGoogle Scholar
  70. 70.
    Huang HJ, Yang ST, Ramey DE (2004) A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution. Appl Biochem Biotechnol 113–116:671–688 CrossRefGoogle Scholar
  71. 71.
    Bouchoux A, de Balman HR, Lutin F (2005) Nanofiltration of glucose and sodium lactate solutions, Variations of retention between single- and mixed-solute solutions. J Membr Sci 258:123–132 CrossRefGoogle Scholar
  72. 72.
    Gruber P (2001) Nature Works, New Products, Markets and Sustainability. Presentation, Industrial Investment Council, Berlin (19.12.2001) Google Scholar
  73. 73.
    Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16:221–231 CrossRefGoogle Scholar
  74. 74.
    Kamm B, Kamm M, Richter K, Reimann W, Siebert A (2000) Formation of Aminium Lactates in Lactic Acid Fermentation, Fermentative production of 1,4-Piperazinium-(l,l)-dilactate and its use as starting material for the synthesis of dilactide (Part 2). Acta Biotech 20:289–304 CrossRefGoogle Scholar
  75. 75.
    Kamm B, Kamm M, Richter K et al (1997) Verfahren zur Herstellung von organischen Aminiumlactaten und deren Verwendung zur Herstellung von Dilactid. Europäische Patentanmeldung EP 0 789 080 A2, Cl. C12P 7/56, (07.02.1997/13.08.1997) Google Scholar
  76. 76.
    Kamm B, Kamm M, Richter K (1997) Formation of aminium lactates in lactic acid fermentation, preparation and characterization of 1,4-piperazinium-(l,l)-dilactate obtained from l(+)-lactic acid (Part I). Acta Biotechn 17:3–18 CrossRefGoogle Scholar
  77. 77.
    Duda A, Penczek S (2003) Polylactide [poly(lactic acid)]: synthesis, properties and applications. Polimery 48:16–27 Google Scholar
  78. 78.
    Kamm B (2004) Neue Ansätze in der Organischen Synthesechemie—Verknüpfung von biologischer und chemischer Stoffwandlung am Beispiel der Bioraffinerie-Grundprodukte Milchsäure und Carnitin. University of Potsdam, Germany Google Scholar
  79. 79.
    Gruber P, Henton DE, Starr J (2005) Polylactic acid from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (ISBN: 3-527-31027-4) Google Scholar
  80. 80.
    Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Application of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stabil 80:403–419 CrossRefGoogle Scholar
  81. 81.
    Hovey A (2002) Cargill delivers $300M message with new plant. Lincoln Journal Star Lincoln, Nebrasca, 03.04.2002 Google Scholar
  82. 82.
    Cargill-Dow to Up PLA Capacity to 450 000 t/y in 10 Yrs (2001) Japan Chemical Week, 11.10.2001 Google Scholar
  83. 83.
    Richter K, Kose F, Kamm B, Kamm M (2001) Fermentative Production of Piperazinium Dilactate. Acta Biotechn 21:37–47 CrossRefGoogle Scholar
  84. 84.
    Dale B (2002) Encyclopedia of Physical Science and Technology. 3rd edn, Volume 2:141–157 Google Scholar
  85. 85.
    Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2006) In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (vol 1, pp 253–294, ISBN: 3-527-31027-4) Google Scholar
  86. 86.
    Ringpfeil M (2001) Biobased Industrial Products and Biorefinery Systems—Industrielle Zukunft des 21. Jahrhunderts? (www.biopract.de) Google Scholar
  87. 87.
    Vorlop KD, Willke Th, Prüße U (2006) Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (vol 2, pp 385–406, ISBN: 3-527-31027-4) Google Scholar
  88. 88.
    Chem World (2003) 20 May, 20 Google Scholar
  89. 89.
    DuPont (2004) http://www.dupont.com/sorona/home.html ; US patent 5686276
  90. 90.
    Wurz O (1960) Zellstoff- und Papierherstellung aus Einjahrespflanzen. Eduard Roether Verlag, Darmstadt Google Scholar
  91. 91.
    Bozell JJ (2004) Alternative feedstocks for bioprocessing. In: Goodman RM (ed) Encyclopedia of Plant and Crop Science. Marcel Dekker, New York (0-8247-4268-0) Google Scholar
  92. 92.
    Webb C, Koutinas AA, Wang R (2004) Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv Biochem Eng/Biotechn 87:195–268 Google Scholar
  93. 93.
    Nonato RV, Mantellato PE, Rossel CEV (2001) Integrated production of biodegradable plastic, sugar and ethanol. App Microbiol Biotechnol 57:1–5 CrossRefGoogle Scholar
  94. 94.
    Rossel CEV, Mantellato PE, Agnelli AM (2006) Nascimento. J Sugar-based Biorefinery—Technology for an integrated production of Poly(3-hydroxybutyrate), Sugar and Ethanol. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries—Industrial Processes and Products. Wiley, Weinheim (vol 1, pp 209–226, ISBN: 3-527-31027-4) Google Scholar
  95. 95.
    Fiechter A (1990) Plastics from bacteria and for bacteria: Poly(ß-hydroxyalkanoates) as Natural, Biocompatible, and Biodegradable Polyesters. Springer, New York, pp 77–93 Google Scholar
  96. 96.
    Rexen F (1986) New industrial application possibilities for straw. Documentation of Svebio Phytochemistry Group (Danish). Fytokemi i Norden, Stockholm, Sweden (1986-03-06, 12) Google Scholar
  97. 97.
    Coombs J, Hall K (1997) The potential of cereals as industrial raw materials: Legal, technical, commercial considerations. In: Campbell GM, Webb C, McKee SL (eds) Cereals—Novel Uses And Processes. Plenum, New York (1–12) Google Scholar
  98. 98.
    Audsley E, Sells JE (1997) Determining the profitability of a whole crop biorefinery. In: Campbell GM, Webb C, McKee SL (eds) Cereals—Novel Uses And Processes. Plenum, New York (191–294) Google Scholar
  99. 99.
    Hacking AJ (1986) The American wet milling industry. In: Economic Aspects of Biotechnology. Cambridge University Press, New York (214–221) Google Scholar
  100. 100.
    Willke Th, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66(2):131–142 CrossRefGoogle Scholar
  101. 101.
    Carlsson R (1994) Sustainable primary production—Green crop fractionation: Effects of species, growth conditions, and physiological development. In: Pessarakli M (ed) Handbook of Plant and Crop Physiology. Marcel Dekker, New York, pp 941–963 Google Scholar
  102. 102.
    Pirie NW (1971) Leaf Protein—Its Agronomy, Preparation, Quality, and Use. Blackwell Scientific Publications, Oxford, UK Google Scholar
  103. 103.
    Pirie NW (1987) Leaf Protein and its By-Products in Human and Animal Nutrition. Cambridge University Press, Cambridge, UK Google Scholar
  104. 104.
    Carlsson R (1998) Status quo of the utilization of green biomass. In: Soyez S, Kamm B, Kamm M (eds) The Green Biorefinery, Proc 1th Int Green Biorefinery Conf, Neuruppin, Germany, 1997. Verlag GÖT, Berlin (ISBN: 3-929-67206-5) Google Scholar
  105. 105.
    Carlsson R (1983) Leaf protein concentrate from plant sources in temperate climates. In: Telek L, Graham HD (eds) Leaf Protein Concentrates. AVI Publ Co Inc, Westport, Conn, USA, pp 52–80 Google Scholar
  106. 106.
    Telek L, Graham HD (eds) (1983) Leaf Protein Concentrates. AVI Publ Co Inc, Westport, Conn, USA Google Scholar
  107. 107.
    Wilkins RJ (ed) (1977) Green Crop Fractionation. The British Grassland Society, c/o Grassland Research Institute, Hurley, Maidenhead, SL6 5LR, UK Google Scholar
  108. 108.
    Tasaki I (ed) (1985) Recent Advances in Leaf Protein Research. Proc 2nd Int Leaf Protein Res Conf, Nagoya, Japan Google Scholar
  109. 109.
    Fantozzi P (ed) (1989) Proc 3rd Int Leaf Protein Res, Conf Pisa-Perugia-Viterbo, Italy Google Scholar
  110. 110.
    Singh N (ed) (1996) Green Vegetation Fractionation Technology. Science Publ Inc, Lebanon, NH 03767, USA Google Scholar
  111. 111.
    White DH, Wolf D (1988) In: Bridgewater AV, Kuester JL (eds) Research in Thermochemical Biomass Conversion. Elsevier Applied Science, New York Google Scholar
  112. 112.
    National Renewable Energy Laboratory (NREL) (2005) http://www.nrel.gov/biomass/biorefinery.htm
  113. 113.
    Okkerse C, van Bekkum H (1999) From fossil to green. Green Chem 4:107–114 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Research Institute Bioactive Polymer Systems e.V. and Brandenburg University of Technology CottbusTeltowGermany
  2. 2.Biorefinery.de GmbHPotsdamGermany

Personalised recommendations