Screening Systems

Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 105)

Abstract

Enzyme screening technology has undergone massive developments in recent years, particularly in the area of high-throughput screening and microarray methods. Screening consists of testing each sample of a sample library individually for the targeted reaction. This requires enzyme assays that accurately test relevant parameters of the reaction, such as catalytic turnover with a given substrate and selectivity parameters such as enantio- and regioselectivity. Enzyme assays also play an important role outside of enzyme screening, in particular for drug screening, medical diagnostics, and in the area of cellular and tissue imaging.

In the 1990s, methods for high-throughput screening of enzyme activities were perceived as a critical bottleneck. As illustrated partly in this chapter, a large repertoire of efficient screening strategies are available today that allow testing of almost any reaction with high-throughput.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uruburu F, Smith D (2003) Int Microbiol 6:101–103 Google Scholar
  2. 2.
    Smith D (2003) Int Microbiol 6:95–100 Google Scholar
  3. 3.
    Streit WR, Schmitz RA (2004) Curr Opin Microbiol 7:492–498 Google Scholar
  4. 4.
    Taylor SV, Kast P, Hilvert D (2001) Angew Chem Int Ed 40:3310–3335 Google Scholar
  5. 5.
    Williams GJ, Nelson AS, Berry A (2004) Cell Mol Life Sci 61:3034–3046 Google Scholar
  6. 6.
    Jaeger KE, Eggert T (2004) Curr Opin Biotechnol 15:305–313 Google Scholar
  7. 7.
    Aharoni A, Griffiths AD, Tawfik DS (2005) Curr Opin Chem Biol 9:210–216 Google Scholar
  8. 8.
    Eisenthal R, Danson M (eds) (2002) Enzyme assays: a practical approach. Oxford University Press Google Scholar
  9. 9.
    Gul S, Sreedharan SK, Brocklehurst K (1998) Enzyme assays: essential data. Wiley, Weinheim Google Scholar
  10. 10.
    Reetz MT (2001) Angew Chem 113:292–320, Google Scholar
  11. 11.
    Reetz MT (2001) Angew Chem Int Ed 40:284–310 Google Scholar
  12. 12.
    Wahler D, Reymond J-L (2001) Curr Opin Chem Biol 5:152–158 Google Scholar
  13. 13.
    Wahler D, Reymond J-L (2001) Curr Opin Biotechnol 12:535–544 Google Scholar
  14. 14.
    Lin H, Cornish VW (2002) Angew Chem Int Ed 41:4402–4425 Google Scholar
  15. 15.
    Arnold FH, Georgiou G (2003) Methods Mol Biol 230:213–221 Google Scholar
  16. 16.
    Goddard J-P, Reymond J-L (2004) Trends Biotechnol 22:363–370 Google Scholar
  17. 17.
    Goddard J-P, Reymond J-L (2004) Curr Opin Biotechnol 15:314–322 Google Scholar
  18. 18.
    Stambuli JP, Hartwig JF (2003) Curr Opin Chem Biol 7:420–426 Google Scholar
  19. 19.
    Oberthur C, Graf H, Hamburger M (2004) Phytochemistry 5:3261–3268 Google Scholar
  20. 20.
  21. 21.
    Kass L (1979) CRC Crit Rev Clin Lab Sci 10:205–223 CrossRefGoogle Scholar
  22. 22.
    Tanaka F, Kerwin L, Kubitz D, Lerner RA, Barbas CF III (2001) Bioorg Med Chem Lett 11:2983–2986 Google Scholar
  23. 23.
    Taylor SJC, Brown RC, Keene PA, Taylor IN (1999) Bioorg Med Chem 7:3163–2168 Google Scholar
  24. 24.
    Joo H, Arisawa A, Lin Z, Arnold FH (1999) Chem Biol 6:699–706 Google Scholar
  25. 25.
    Joo H, Lin Z, Arnold FH (1999) Nature 399:670–673 Google Scholar
  26. 26.
    Alexeeva M, Enright A, Dawson MJ, Mahmoudian M, Turner NJ (2002) Angew Chem Int Ed 31:3177–3180 Google Scholar
  27. 27.
    Carr R, Alexeeva M, Enright A, Eve TSC, Dawson MJ, Turner NJ (2003) Angew Chem Int Ed 42:4807–4810 Google Scholar
  28. 28.
    van Loo B, Spelberg JHL, Kingma J, Sonke T, Wubbolts MG (2004) Chem Biol 11:981–990 Google Scholar
  29. 29.
    Althoff EA, Cornish VW (2002) Angew Chem Int Ed 41:2327–2330 Google Scholar
  30. 30.
    Baker K, Bleczinski C, Lin H, Salazar-Jimenez G, Sengupta D, Krane S, Cornish VW (2002) PNAS 99:16537–16542 Google Scholar
  31. 31.
    Sengupta D, Lin H, Goldberg SD, Mahal JJ, Cornish VW (2004) Biochemistry 43:3570–3581 Google Scholar
  32. 32.
    Taylor SV, Walter KU, Kast P, Hilvert D (2001) PNAS 98:10596–19601 Google Scholar
  33. 33.
    Lin H, Tao H, Cornish VW (2004) J Am Chem Soc 126:15051–15059 Google Scholar
  34. 34.
    Olsen MJ, Stephens D, Griffiths D, Daugherty P, Georgiou G, Iverson BL (2000) Nature Biotechnol 18:1071–1074 Google Scholar
  35. 35.
    Tawfik DS, Griffiths AD (1998) Nat Biotechnol 16:652–656 Google Scholar
  36. 36.
    Bernath K, Hai M, Mastrobattista E, Griffiths AD, Magdassi S, Tawfik DS (2004) Anal Biochem 325:151–157 Google Scholar
  37. 37.
    Williams GJ, Domann S, Nelson A, Berry A (2003) PNAS 100:3143–3148 Google Scholar
  38. 38.
    Woodhall T, Williams G, Berry A, Nelson A (2005) Angew Chem Int Ed 44:2109–2112 Google Scholar
  39. 39.
    Baumann M, Stürmer R, Bornscheuer UT (2001) Angew Chem Int Ed 40:4201–4204 Google Scholar
  40. 40.
    Li Z, Bütikofer L, Witholt B (2004) Angew Chem Int Ed 43:1698–1702 Google Scholar
  41. 41.
    Shulman H, Eberhard A, Eberhard C, Ulitzur S, Keinan E (2000) Bioorg Med Chem Lett 10:2353–2356 Google Scholar
  42. 42.
    Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) J Biol Chem 272:17907–17911 Google Scholar
  43. 43.
    Harris JH, Brackes BJ, Leonetti F, Mahrus S, Ellmann JA, Craik CS (2000) Proc Natl Acad Sci USA 97:7754–7759 Google Scholar
  44. 44.
    Harris JL, Alper PB, Li J, Reichsteiner M, Backes BJ (2001) Chem Biol 8:1131–1141 Google Scholar
  45. 45.
    Rano TA, Timkey T, Peterson EP, Rotonda J, Nicholson DW, Becker JW, Chapman KT, Thornberry NA (1997) Chem Biol 4:149–155 Google Scholar
  46. 46.
    Pinilla C, Appel JR, Blanc P, Houghten RA (1992) Biotechniques 13:901–905 Google Scholar
  47. 47.
    Klein G, Reymond J-L (1998) Bioorg Med Chem Lett 8:1113–116 Google Scholar
  48. 48.
    Klein G, Reymond J-L (1999) Helv Chim Acta 82:400–408 Google Scholar
  49. 49.
    Badalassi F, Klein G, Crotti P, Reymond J-L (2004) Eur J Org Chem 2557–2566 Google Scholar
  50. 50.
    Leroy E, Bensel N, Reymond J-L (2003) Adv Syn Catal 345:859–865 Google Scholar
  51. 51.
    Jourdain N, Perez-Carlon R, Reymond J-L (1998) Tetrahedron Lett 39:9415 Google Scholar
  52. 52.
    Pérez R Carlón, Jourdain N, Reymond J-L (2000) Chem Eur J 6:4154 Google Scholar
  53. 53.
    List B, Barbas CF III, Lerner RA (1998) PNAS 95:15351–15355 Google Scholar
  54. 54.
    González-García E, Helaine V, Klein G, Schuermann M, Sprenger GA, Fessner W-D, Reymond J-L (2003) Chem Eur J 9:893–899 Google Scholar
  55. 55.
    Sevestre A, Hélaine V, Guyot G, Martin C, Hecquet L (2003) Tetrahedron Lett 44:827–830 Google Scholar
  56. 56.
    Badalassi F, Wahler D, Klein G, Crotti P, Reymond J-L (2000) Angew Chem Int Ed 39:4067 Google Scholar
  57. 57.
    Wahler D, Badalassi F, Crotti P, Reymond J-L (2001) Angew Chem Int Ed Engl 40:4457 Google Scholar
  58. 58.
    Wahler D, Badalassi F, Crotti P, Reymond J-L (2002) Chem Eur J 8:3211–3228 Google Scholar
  59. 59.
    Nyfeler E, Grognux J, Wahler D, Reymond J-L (2003) Helv Chim Acta 86:2919–2927 Google Scholar
  60. 60.
    Gonzalez-Garcia EM, Grognux J, Wahler D, Reymond J-L (2003) Helv Chim Acta 86:2458–2470 Google Scholar
  61. 61.
    Badalassi F, Nguyen H-K, Crotti P, Reymond J-L (2002) Helv Chim Acta 85:3090–3098 Google Scholar
  62. 62.
    Grognux J, Wahler D, Nyfeler E, Reymond J-L (2004) Tetrahedron Asym 15:2981–2989 Google Scholar
  63. 63.
    Lagarde D, Nguyen H-K, Ravot G, Wahler D, Reymond J-L, Hills G, Veit T, Lefevre F (2002) Org Process R & D 6:441–5 Google Scholar
  64. 64.
    Bicalho B, Chen LS, Grognux J, Reymond J-L, Marsaioli AJ (2004) J Braz Chem Soc 15:911–916 Google Scholar
  65. 65.
    Bensel N, Reymond MT, Reymond J-L (2001) Chem Eur J 7:4604 Google Scholar
  66. 66.
    Leroy E, Bensel N, Reymond J-L (2003) Adv Syn Catal 345:859–865 Google Scholar
  67. 67.
    Sicard R, Chen LS, Marsaioli AJ, Reymond J-L (2005) Adv Synth Catal 347:1041–1050 Google Scholar
  68. 68.
    Amir RJ, Shabat D (2004) Chem Commun, pp 1614–1615 Google Scholar
  69. 69.
    Jones PD, Wolf NM, Morisseau C, Whetstone P, Hock B, Hammock BD (2005) Anal Biochem 343:66–75 CrossRefGoogle Scholar
  70. 70.
    Matayoshi ED, Wang GT, Krafft GA, Erickson J (1990) Science 247:954–958 Google Scholar
  71. 71.
    Breddam K, Meldal M (1992) Eur J Biochem 206:103–107 Google Scholar
  72. 72.
    Meldal M, Svendsen I, Breddam K, Auzanneau FI (1994) Proc Natl Acad Sci USA 91:3314–3318 Google Scholar
  73. 73.
    St Hilaire PM, Willert M, Juliano MA, Juliano L, Meldal M (1999) J Comb Chem 1:509–523 Google Scholar
  74. 74.
    Zandonella G, Haalck L, Spener F, Faber K, Paltauf F, Hermetter A (1996) Chirality 8:481–89 Google Scholar
  75. 75.
    Duque M, Graupner M, Stutz H, Wicher I, Zechner R, Paltauf F, Hermetter A (1996) J Lipid Res 37:868–76 Google Scholar
  76. 76.
    Hermetter A (1999) Methods Mol Biol 109:19–29 Google Scholar
  77. 77.
    Boyer V, Fort S, Frandsen TP, Schülein M, Cottaz S, Driguez H (2002) Chem Eur J 8:1389–1394 Google Scholar
  78. 78.
    Hamman BD, Makings LR, Pollok BA, Rodems SM (2002) US Patent 6'410'255 Google Scholar
  79. 79.
    Mayer C, Jakeman DL, Mah M, Karjala G, Gal L, Warren RAJ, Withers SG (2001) Chem Biol 8:437–443 Google Scholar
  80. 80.
    Kupcho K, Somberg R, Bulleit B, Goueli SA (2003) Anal Biochem 317:210–217 Google Scholar
  81. 81.
    Tanaka F, Thayumanavan R, Barbas CF III (2003) J Am Chem Soc 125:8523–8528 Google Scholar
  82. 82.
    Tanaka F, Nobuyuki N, Barbas CF III (2004) J Am Chem Soc 126:3692–3693 Google Scholar
  83. 83.
    Wang Q, Lawrence DS (2005) J Am Chem Soc 127:7684–7685 Google Scholar
  84. 84.
    Janes LE, Kazlauskas RJ (1997) J Org Chem 62:4560–4561 Google Scholar
  85. 85.
    Janes LE, Löwendahl AC, Kazlauskas RJ (1998) Chem Eur J 4:2324–2331 Google Scholar
  86. 86.
    Liu AMF, Somers NA, Kazlauskas RJ, Brush TS, Zocher F, Enzelberger MM, Bornscheuer UT, Horsman GP, Mezzetti A, Schmidt-Dannert C, Schmid RD (2001) Tetrahedron Asym 12:545–556 Google Scholar
  87. 87.
    Konarzycka M, Bornscheuer UT (2003) Angew Chem Int Ed 42:1418–1420 Google Scholar
  88. 88.
    Klein G, Reymond J-L (2001) Angew Chem Int Ed 40:1771 Google Scholar
  89. 89.
    Dean KES, Klein G, Renaudet O, Reymond J-L (2003) Bioorg Med Chem Lett 10:1653–1656 Google Scholar
  90. 90.
    Maeda H, Matsuno H, Ushida M, Katayaman K, Saeki K, Itoh N (2005) Angew Chem Int Ed 44:2922–2925 Google Scholar
  91. 91.
    Humphrey CE, Easson MAM, Turner NJ (2004) Chem Bio Chem 5:1144–1148 Google Scholar
  92. 92.
    Henke E, Bornscheuer UT (2003) Anal Chem 75:255–260 Google Scholar
  93. 93.
    Banerjee A, Sharma R, Banerjee UC (2003) Biotech Appl Biochem 37:289–293 Google Scholar
  94. 94.
    Duchateau ALL, Hillemans-Crombach MG, van Duijnhoven A, Reiss R, Sonke T (2004) Anal Biochem 330:362–364 Google Scholar
  95. 95.
    Wahler D, Reymond J-L (2002) Angew Chem Int Ed Engl 41:1229–1232 Google Scholar
  96. 96.
    Wahler D, Boujard O, Lefèvre F, Reymond J-L (2004) Tetrahedron 60:703–710 Google Scholar
  97. 97.
    Doderer K, Schmid RD (2004) Biotechnol Lett 26:835–839 Google Scholar
  98. 98.
    Mateo C, Archela A, Furstoss R (2003) Anal Biochem 314:135–141 Google Scholar
  99. 99.
    Doderer K, Lutz-Wahl S, Hauer B, Schmid RD (2003) Anal Biochem 321:131–134 Google Scholar
  100. 100.
    Zocher F, Enzelberger MM, Bornscheuer UT, Hauer B, Schmid RD (1999) Anal Chim Acta 391:345 Google Scholar
  101. 101.
    Tawfik DS, Green BS, Chap R, Sela M, Eshhar Z (1993) Proc Natl Acad Sci USA 90:373 Google Scholar
  102. 102.
    MacBeath G, Hilvert D (1994) J Am Chem Soc 116:6101 Google Scholar
  103. 103.
    Benedetti F, Berti F, Massimiliano F, Resmini M, Bastiani E (1998) Anal Biochem 256:67 Google Scholar
  104. 104.
    Geymayer P, Bahr N, Reymond J-L (1999) Chem Eur J 5:1006 Google Scholar
  105. 105.
    Taran F, Gauchet C, Mohar B, Meunier S, Valleix A, Renard PY, Creminon C, Grassi J, Wagner A, Mioskowski C (2002) Angew Chem Int Ed 41:124–127 Google Scholar
  106. 106.
    Das G, Talukdar P, Matile S (2002) Science 298:1600–1602 Google Scholar
  107. 107.
    Sorde N, Das G, Matile S (2003) Proc Natl Acad Sci USA 100:11964–11969 Google Scholar
  108. 108.
    Litvinchuk S, Sordé N, Matile S (2005) J Am Chem Soc 127:9316–9317 Google Scholar
  109. 109.
    Molin O, Nillson L, Ansehn S (1983) J Clin Microbiol 18:521–525 Google Scholar
  110. 110.
    Nutiu R, Yu JMY, Li Y (2004) Chem Bio Chem 5:1139–1144 Google Scholar
  111. 111.
    Ojida A, Mito-Oka Y, Inoue MA, Hamachi I (2002) J Am Chem Soc 124:6256–6258 Google Scholar
  112. 112.
    Hamachi S, Yoshimura I, Kohira T, Tamaru S, Hamachi I (2005) J Am Chem Soc 127:11835–11841 Google Scholar
  113. 113.
    Babiak P, Reymond J-L (2005) Anal Chem 77:373–377 Google Scholar
  114. 114.
    Gosalia DN, Diamond SL (2003) Proc Natl Acad Sci USA 15:8721–8726 Google Scholar
  115. 115.
    Zhu Q, Uttamchandani M, Li D, Lesaicherre ML, Yao SQ (2003) Org Lett 5:1257–1260 Google Scholar
  116. 116.
    Salisbury CM, Maly DJ, Ellman JA (2002) J Am Chem Soc 124:14868–14870 Google Scholar
  117. 117.
    Winssinger N, Damoiseaux R, Tully DC, Geierstanger BH, Burdick K, Harris JL (2004) Chem Biol 11:1351–1360 Google Scholar
  118. 118.
    Korbel GA, Lalic G, Shair MD (2001) J Am Chem Soc 123:361–362 Google Scholar
  119. 119.
    Horeau A (1961) Tetrahedron Lett 2:506–512 Google Scholar
  120. 120.
    Horeau A (1962) Tetrahedron Lett 3:965–969 Google Scholar
  121. 121.
    Eelkema R, van Delden RA, Feringa BL (2004) Angew Chem Int Ed 43:5013–5016 Google Scholar
  122. 122.
    Yeo WS, Mrkisch M (2003) Angew Chem Int Ed 42:3121–3124 Google Scholar
  123. 123.
    Valincius G, Ignatjev I, Niaura G, Kazemekaite M, Talaikyte Z, Razumas V, Svendsen A (2005) Anal Chem 77:2632–2636 Google Scholar
  124. 124.
    Nishino H, Nihira T, Mori T, Okahata Y (2004) J Am Chem Soc 126:2264–2265 Google Scholar
  125. 125.
    Reymond J-L, Koch T, Schröer J, Tierney E (1996) Proc Natl Acad Sci USA 93:4251 Google Scholar
  126. 126.
    Reetz MT, Kühling KM, Wilensek S, Husmann H, Häusig UW, Hermes M (2001) Catal Today 67:389–396 Google Scholar
  127. 127.
    Reetz MT, Brunner B, Schneider T, Schulz F, Clouthier CM, Kayser MM (2004) Angew Chem Int Ed Engl 43:4075–4078 Google Scholar
  128. 128.
    Reetz MT, Daligault F, Brunner B, Hinrichs H, Deege A (2004) Angew Chem Int Ed Engl 43:4078–4081 Google Scholar
  129. 129.
    Kaluzna IA, Matsuda T, Sewell AK, Stewart JD (2004) J Am Chem Soc 126:12827–12832 Google Scholar
  130. 130.
    Reetz MT, Kühling KM, Deege A, Hinrichs H, Belder D (2000) Angew Chem Int Ed Engl 39:3891–3893 Google Scholar
  131. 131.
    Reymond J-L, Wahler D (2002) Chem Bio Chem 3:701–708 Google Scholar
  132. 132.
    Grognux J, Reymond J-L (2004) Chem Bio Chem 5:826–831 Google Scholar
  133. 133.
    Goddard J-P, Reymond J-L (2004) J Am Chem Soc 126:11116–11117 Google Scholar
  134. 134.
    Yongzheng Y, Reymond J-L (2005) Mol Biosys 1:57–63 Google Scholar
  135. 135.
    Bussière J, Foucart A, Colobert L, (1967) C R Acad Sci Paris 264D:415–417 Google Scholar
  136. 136.
    Monget D, Nardon P (1976) French patent FR 2 341 865, Paris; US patent 4277561 Google Scholar
  137. 137.
    Humble MW, King A, Philipps I (1977) J Clin Path 30:275–277 Google Scholar
  138. 138.
    Sicard R, Goddard J-P, Mazel M, Audiffrin C, Fourage L, Ravot G, Wahler D, Lefèvre F, Reymond J-L (2005) Adv Synth Catal 347:987–996 Google Scholar
  139. 139.
    Horeau A, Nouaille A (1990) Tetrahedron Lett 31:2707–2710 Google Scholar
  140. 140.
    Schoofs A, Horeau A (1977) Tetrahedron Lett 18:3259–3262 Google Scholar
  141. 141.
    Guo J, Wu J, Siuzdak G, Finn MG (1999) Angew Chem Int Ed 38:1755–1758 Google Scholar
  142. 142.
    Reetz MT, Becker MH, Klein H-W, Stöckigt D (1999) Angew Chem Int Ed 38:1758–1761 Google Scholar
  143. 143.
    Zha D, Eipper A, Reetz MT (2003) Chem Bio Chem 4:34–39 Google Scholar
  144. 144.
    Reetz MT, Torre C, Eipper A, Lohmer R, Hermes M, Brunner B, Maichele A, Bocola M, Arand M, Cronin A, Genzel Y, Archelas A, Furstoss R (2004) Org Lett 6:177–180 Google Scholar
  145. 145.
    DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ (2003) J Am Chem Soc 125:11476–11477 Google Scholar
  146. 146.
    Zea CJ, MacDonell SW, Pohl NL (2003) J Am Chem Soc 125:13666–13667 Google Scholar
  147. 147.
    Kang M-J, Tholey A, Heinzle E (2000) Rapid Commun Mass Spectrom 14:1972–1978 Google Scholar
  148. 148.
    Shen Z, Go EP, Gamez A, Apon JV, Fokin V, Greig M, Ventura M, Crowell JE, Blixt O, Paulson JC, Stevens RC, Finn MG, Siuzdak G (2004) Chem Bio Chem 5:921–927 Google Scholar
  149. 149.
    Yu Y, Ko K-S, Zea CJ, Pohl NL (2004) Org Lett 6:2031–2033 Google Scholar
  150. 150.
    Basile S, Ferrer I, Furlong ET, Voorhees KJ (2002) Anal Chem 74:4290–4293 Google Scholar
  151. 151.
    Spraul KM, Hofmann M, Ackermann M, Nicholls AW, Damment SJP, Haselden JN, Shockcor JP, Nicholson JK, Lindon JC (1997) Anal Commun 34:339 –341 Google Scholar
  152. 152.
    Reetz MT, Eipper A, Tielmann P, Mynott R (2002) Adv Synth Catal 344:1008–1016 Google Scholar
  153. 153.
    Reetz MT, Tielmann P, Eipper A, Ross A, Schlotterbeck G (2004) Chem Commun, pp 1366–1367 Google Scholar
  154. 154.
    Reetz MT, Becker MH, Kühling KM, Holzwarth H (1998) Angew Chem Int Ed 37:2647 Google Scholar
  155. 155.
    Connolly AR, Sutherland JD (2000) Angew Chem Int Ed 39:4268–4271 Google Scholar
  156. 156.
    Tielmann P, Boese M, Luft M, Reetz MT (2003) Chem Eur J 9:3882–3887 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryUniversity of BerneBerneSwitzerland

Personalised recommendations