Scaling of Workload Traces

  • Carsten Ernemann
  • Baiyi Song
  • Ramin Yahyapour
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2862)

Abstract

The design and evaluation of job scheduling strategies often require simulations with workload data or models. Usually workload traces are the most realistic data source as they include all explicit and implicit job patterns which are not always considered in a model. In this paper, a method is presented to enlarge and/or duplicate jobs in a given workload. This allows the scaling of workloads for later use on parallel machine configurations with a different number of processors. As quality criteria the scheduling results by common algorithms have been examined. The results show high sensitivity of schedule attributes to modifications of the workload. To this end, different strategies of scaling number of job copies and/or job size have been examined. The best results had been achieved by adjusting the scaling factors to be higher than the precise relation between the new scaled machine size and the original source configuration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Downey, A.B.: A parallel workload model and its implications for processor allocation. In: 6th Intl. Symp. High Performance Distributed Comput. (August 1997)Google Scholar
  2. 2.
    Downey, A.B.: Using queue time predictions for processor allocation. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 35–57. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Downey, A.B., Feitelson, D.G.: The elusive goal of workload characterization. Perf. Eval. Rev. 26(4), 14–29 (1999)CrossRefGoogle Scholar
  4. 4.
    Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid computing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 128–152. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Feitelson, D.G.: Packing schemes for gang scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp. 89–110. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Feitelson, D.G.: Memory usage in the LANL CM-5 workload. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 78–94. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Feitelson, D.G.: Workload modeling for performance evaluation. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Feitelson, D.G., Jette, M.A.: Improved utilization and responsiveness with gang scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 238–261. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Feitelson, D.G., Nitzberg, B.: Job characteristics of a production parallel scientific workload on the NASA Ames iPSC/860. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 337–360. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 1–24. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Hotovy, S.: Workload evolution on the Cornell Theory Center IBM SP2. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Jann, J., Pattnaik, P., Franke, H., Wang, F., Skovira, J., Riodan, J.: Modeling of workload in MPPs. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 95–116. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Krallmann, J., Schwiegelshohn, U., Yahyapour, R.: On the design and evaluation of job scheduling algorithms. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 17–42. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Lawson, B.G., Smirni, E.: Multiple-queue backfilling scheduling with priorities and reservations for parallel systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 72–87. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Lo, V., Mache, J., Windisch, K.: A comparative study of real workload traces and synthetic workload models for parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 25–46. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: Modeling the characteristics of rigid jobs. J. Parallel & Distributed Comput. (to appear)Google Scholar
  17. 17.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel & Distributed Syst. 12(6), 529–543 (2001)CrossRefGoogle Scholar
  18. 18.
    Schwiegelshohn, U., Yahyapour, R.: Improving first-come-iirst-serve job scheduling by gang scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 180–198. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Parallel Workloads Archive (April 2003), http://www.cs.huji.ac.il/labs/parallel/workload/
  20. 20.
    Windisch, K., Lo, V., Moore, R., Feitelson, D., Nitzberg, B.: A comparison of workload traces from two production parallel machines. In: 6th Symp. Frontiers Massively Parallel Comput., October 1996, pp. 319-326 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Carsten Ernemann
    • 1
  • Baiyi Song
    • 1
  • Ramin Yahyapour
    • 1
  1. 1.Computer Engineering InstituteUniversity DortmundDortmundGermany

Personalised recommendations