Advertisement

Zero-Value Point Attacks on Elliptic Curve Cryptosystem

  • Toru Akishita
  • Tsuyoshi Takagi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2851)

Abstract

The differential power analysis (DPA) might break the implementation of elliptic curve cryptosystem (ECC) on memory constraint devices. Goubin proposed a variant of DPA using the point (0,y), which is not randomized in Jacobian coordinates or in the isomorphic class. This point often exists in the standard curves, and we have to care this attack. In this paper, we propose the zero-value point attack as an extension of Goubin’s attack. Note that even if a point has no zero-value coordinate, the auxiliary registers might take zero-value. We investigate these zero-value registers that cannot be randomized by the above randomization. Indeed, we have found several points P = (x,y) which cause the zero-value registers, e.g., (1)3x 2 + a = 0, (2)5x 4 + 2ax 2 – 4bx + a 2 = 0, (3)P is y-coordinate self-collision point, etc. We demonstrate the standard curves that have these points. Interestingly, some conditions required for the zero-value attack depend on the explicit implementation of the addition formula — in order to resist this type of attacks, we have to care how to implement the addition formula. Finally, we note that Goubin’s attack and the proposed attack assume that the base point P can be chosen by the attacker and the secret scalar d is fixed, so that they are not applicable to ECDSA signature generation.

Keywords

side channel attack differential power analysis elliptic curve cryptosystem addition formula zero-value register 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akishita, T., Takagi, T.: Zero-Value Point Attacks on Elliptic Curve Cryptosystem., Technical Report No. TI-1/03, Technische Universtät Darmstadt (2003), http://www.informatik.tu-darmstadt.de/TI/
  2. 2.
    Brier, É., Joye, M.: Weierstrass Elliptic Curve and Side-Channel Attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Clavier, C., Joye, M.: Universal exponentiation algorithm. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Cohen, H.: Course in Computational Algebraic Number Theory. In: CADE 1982, vol. 138. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Fischer, W., Giraud, C., Knundsen, E.W., Seifert, J.-P.: Parallel Scalar Multiplication on General Elliptic Curves over IF p Hedged against Non- Differential Side-Channel Attacks, IACR Cryptology ePrint Archive (2002/2007), http://eprint.iacr.org/2002/007/
  8. 8.
    Goubin, L.: A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–211. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Itoh, K., Izu, T., Takenaka, M.: Address-bit Differential Power Analysis on Cryptographic Schemes OK-ECDH and OK-ECDSA. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Itoh, K., Yajima, J., Takenaka, M., Torii, N.: DPA Countermeasures by improving the window method. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 303–317. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Izu, T., Takagi, T.: A Fast Parallel Elliptic Curve Multiplication Resistant against Side Channel Attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 280–296. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Izu, T., Takagi, T.: Exceptional Procedure Attack on Elliptic Curve Cryptosystems. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 224–239. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Izu, T., Möller, B., Takagi, T.: Improved Elliptic Curve Multiplication Methods Resistant against Side Channel Attacks. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 296–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Joye, M., Tymen, C.: Protection against Differential Analysis for Elliptic Curve Cryptography. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Menezes, J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  16. 16.
    Möller, B.: Securing Elliptic Curve Point Multiplication against Side-Channel Attacks. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324–334. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Möller, B.: Parallelizable Elliptic Curve Point Multiplication Method with Resistance against Side-Channel Attacks. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 402–413. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Mathematics of Computation 48, 243–264 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Okeya, K., Takagi, T.: The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 328–343. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Silverman, J.: The Arithmetic of Elliptic Curves, GMT 106. Springer, Heidelberg (1986)Google Scholar
  21. 21.
    Smart, N.: An Analysis of Goubin’s Refined Power Analysis Attack. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 281–290. Springer, Heidelberg (2003) (to appear)CrossRefGoogle Scholar
  22. 22.
    Standard for Efficient Cryptography (SECG), SEC2: Recommended Elliptic Curve Domain Parameters, Version 1.0 (2000), http://www.secg.org/
  23. 23.
    Wallace, C.S.: A Suggestion for a Fast Multiplier. IEEE Trans. Electron. Comput., 14–17 (1964)Google Scholar
  24. 24.
    Walter, C.: MIST: An Efficient, Randomized Exponentiation Algorithm for Resisting Power Analysis. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 53–66. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Toru Akishita
    • 1
  • Tsuyoshi Takagi
    • 2
  1. 1.Ubiquitous Technology LaboratoriesSony CorporationTokyoJapan
  2. 2.Fachbereich InformatikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations