Formalizing Hilbert’s Grundlagen in Isabelle/Isar

  • Laura I. Meikle
  • Jacques D. Fleuriot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2758)


This paper describes part of the formalization of Hilbert’s Grundlagen der Geometrie in the higher order logic of Isabelle/Isar, an extension of the interactive theorem prover Isabelle. Many mechanized proofs and formalization issues are discussed and the work is compared against Hilbert’s prose and also other research in the field.


High Order Logic Geometric Intuition Interactive Theorem Prover Mechanical Proof Formal Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of readable proofs with geometric invariants, I. multiple and shortest proof generation. Journal of Automated Reasoning 17, 325–347 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Church, A.: A formulation of the simple theorey of type. Journal of Symbolic Logic 5, 56–68 (1940)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dehlinger, C., Duford, J., Schreck, P.: Higher-Order Intuitionistic Formalization and Proofs in Hilbert’s Elementary Geometry. Automated deduction in Geometry, pp. 306–323. Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Gordon, M., Melham, T.: Introduction to HOL: A theorem proving enviroment for Higher Order Logic. Cambridge University Press, Cambridge (1993)Google Scholar
  5. 5.
    Hilbert, D.: The Foundations of Geometry, 11th edn. The Open Court Company (2001); Translation by Leo UngerGoogle Scholar
  6. 6.
    Hilbert, D.: The Foundations of Geometry, 1st edn. The Open Court Company (1901); Translation by E. J. TownsendGoogle Scholar
  7. 7.
    Paulson, L.C. (ed.): Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  8. 8.
    Podnieks, K.M.: Around Goedel’s Theorem, 2nd edn. Latvian State University Press (1992)Google Scholar
  9. 9.
    Quaife, A.: Automated Development of Fundamental Mathematical Theories. Kluwer, Dordrecht (1992)zbMATHGoogle Scholar
  10. 10.
    Wang, D.: Geometry Machines: From AI to SMC. In: Pfalzgraf, J., Calmet, J., Campbell, J. (eds.) AISMC 1996. LNCS, vol. 1138, pp. 213–239. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Wenzel, M.: The Isabelle/Isar Reference Manual. Technische Universität München (2002),
  12. 12.
    Wu, W.: Basic principles of mechanical theorem proving in elementary geometries. Journal of Automated Reasoning 2, 221–252 (1986)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Laura I. Meikle
    • 1
  • Jacques D. Fleuriot
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations