Soliton Dynamics in Mode-Locked Lasers

  • S.T. Cundiff
Part of the Lecture Notes in Physics book series (LNP, volume 661)


Mode-locked lasers generate ultra-short optical pulses, with durations ranging from hundreds of picoseconds (ps) down to a few femtoseconds (fs). The pulse circulating in the cavity of a mode-locked laser can be thought of as a dissipative soliton, where the dissipation is due to the inevitable presence of loss, which must be compensated by gain. In addition to gain and loss, the pulse experiences nonlinearity and dispersion, the key ingredients for any soliton system. These effects occur in physical elements that do not completely fill the cavity, thus there is a similarity to the dispersion management that is used in telecommunications systems.


Pump Power Polarization State Output Coupler Polarization Mode Dispersion Dissipative Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a textbook-level discussion of lasers, see for example A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986) or J. T. Verdeyen, Laser Electronics (Prentice-Hall, Englewood Cliffs, 1995).Google Scholar
  2. 2.
    E. P. Ippen, Appl. Phys. B 58, 159 (1994).Google Scholar
  3. 3.
    Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, J. G. FujimotoJ. Opt. Soc. Am. B 16, 1999 (1999).Google Scholar
  4. 4.
    E. DesurvireErbium-Doped Fiber Amplifiers (John Wiley & Sons, New York, 1994).Google Scholar
  5. 5.
    B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. KnoxIEEE J. Sel. Top. Quantum Electr. 3, 1065 (1997).Google Scholar
  6. 6.
    L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, E. P. IppenAppl. Phys. B 65, 277 (1997).Google Scholar
  7. 7.
    A. Hasegawa, F. TappertAppl. Phys. Lett. 23, 142 (1973).Google Scholar
  8. 8.
    I. P. KaminowIEEE J. Quantum Electron. 17, 15 (1981).Google Scholar
  9. 9.
    L. F. Mollenauer, R. H. Stolen, J. P. GordonPhys. Rev. Lett. 45, 1095 (1980).Google Scholar
  10. 10.
    H. A. Haus, W. S. WongRev. Mod. Phys. 68, 423 (1996).Google Scholar
  11. 11.
    C.D. Poole, J. NagelPolarization effects in lightwave systems. In: Optical Fiber Telecommunications IIIA, ed. by I. P. Kaminow, T. L. Koch (Academic, San Dieogo 1997) p. 114.Google Scholar
  12. 12.
    M. N. Islam, C. D. Poole, J. P. GordonOpt. Lett. 14, 1011 (1989).Google Scholar
  13. 13.
    C. R. MenyukOpt. Lett. 12, 614 (1987); IEEE J. Quantum Electron. 23, 174 (1987); J. Opt. Soc. Am. B 5, 392 (1988).Google Scholar
  14. 14.
    D. N. Christodoulides, R. I. JosephOpt. Lett. 13, 53 (1988).Google Scholar
  15. 15.
    S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, W. H. KnoxPhys. Rev. Lett. 82, 3988 (1999).Google Scholar
  16. 16.
    M. V. Tratnik, J. E. SipePhys. Rev. A 38, 2011 (1988).Google Scholar
  17. 17.
    N. Akhmediev, A. Buryak, J. M. Soto-CrespoOpt. Commun. 112, 278 (1994).Google Scholar
  18. 18.
    N. Akhmediev, J. M. Soto-CrespoPhys. Rev. E 49, 5742 (1994).Google Scholar
  19. 19.
    N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, D. R. Andersen, J. Opt. Soc. Am. B 12, 434 (1995).Google Scholar
  20. 20.
    J. M. Soto-Crespo, N. Akhmediev, A. AnkiewiczPhys. Rev. E 51, 3547 (1995).Google Scholar
  21. 21.
    Y. Chen, J. AtaiJ. Opt. Soc. Am. B 12, 434 (1995).Google Scholar
  22. 22.
    H. G. WinfulOpt. Lett. 11, 33 (1986).Google Scholar
  23. 23.
    K. J. Blow, N. J. Doran, D. WoodOpt. Lett. 12, 202 (1987).Google Scholar
  24. 24.
    Y. Barad, Y. SilberbergPhys. Rev. Lett. 78, 3290 (1997).Google Scholar
  25. 25.
    S. T. Cundiff, B. C. Collings, W. H. KnoxOptics Express 1, 12 (1997).Google Scholar
  26. 26.
    N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, W. H. KnoxOpt. Lett. 23, 852 (1998).Google Scholar
  27. 27.
    B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, W. H. Knox,J. Opt . Soc. Am. B 17, 354 (2000).Google Scholar
  28. 28.
    J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, W. H. KnoxJ. Opt. Soc. Am. B 17, 366 (2000).Google Scholar
  29. 29.
    G. P. AgrawalNonlinear Fiber Optics (Academic Press, San Diego 1995).Google Scholar
  30. 30.
    N. N. Akhmediev and A. AnkiewiczSolitons: Nonlinear pulses and beams, (Chapman & Hall, London 1997).Google Scholar
  31. 31.
    S.V. ManakovSov. JETP 38, 248 (1974).Google Scholar
  32. 32.
    J. U. Kang, G. I. Stegeman, J. S. Aitchison, N. AkhmedievPhys. Rev. Lett. 76, 3699 (1996).Google Scholar
  33. 33.
    S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. BerganoJ. Lightwave Technol. 10, 28 (1992).Google Scholar
  34. 34.
    L. F. Mollenauer, K. Smith, J. P. Gordon, C. R. MenyukOpt. Lett. 14, 1219 (1989).Google Scholar
  35. 35.
    S. M. J. KelleyElectron. Lett. 28, 806 (1992).Google Scholar
  36. 36.
    J. P. GordonJ. Opt. Soc. Am. B 9, 91, (1992).Google Scholar
  37. 37.
    H. C. LefevreElectron. Lett. 16, 778 (1980).Google Scholar
  38. 38.
    S. T. Cundiff, B. C. Collings, K. BergmanCHAOS 10, 613 (2000).Google Scholar
  39. 39.
    J. M. Soto-Crespo, N. Akhmediev, A. AnkiewiczPhys. Rev. Lett. 85, 2937 (2000).Google Scholar
  40. 40.
    S. T. Cundiff, J. M. Soto-Crespo N. N. AkhmedievPhys. Rev. Lett. 88, 073903 (2002).Google Scholar
  41. 41.
    R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer, Boston 2002).Google Scholar
  42. 42.
    W. H. KnoxOpt. Lett. 17, 514 (1992).Google Scholar
  43. 43.
    H. G. SchusterDeterministic Chaos, 3rd ed. (VCH, Weinheim 1995).Google Scholar
  44. 44.
    D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. CundiffScience 288, 635 (2000).CrossRefGoogle Scholar
  45. 45.
    A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. HänschF. Krausz: Phys. Rev. Lett. 85, 740 (2000).CrossRefGoogle Scholar
  46. 46.
    S. T. CundiffJ. Phys. D 35, R43 (2002).Google Scholar
  47. 47.
    A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakoviev, A. Scrinzi, T. W. Hänsch, and F. KrauszNature 421, 611 (2003).CrossRefGoogle Scholar
  48. 48.
    S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. HänschPhys. Rev. Lett. 84, 5102 (2000).Google Scholar
  49. 49.
    S. T. Cundiff, J. YeRev. Mod. Phys. 75, 325 (2003).CrossRefGoogle Scholar
  50. 50.
    S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. WinelandScience 293, 825 (2001).CrossRefGoogle Scholar
  51. 51.
    J. Ye, L.-S. Ma, J. L. HallPhys. Rev. Lett. 87, 270801 (2001).CrossRefGoogle Scholar
  52. 52.
    H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. KellerAppl. Phys. B 69, 327 (1999).Google Scholar
  53. 53.
    L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. HänschOpt. Lett. 21, 2008 (1996).Google Scholar
  54. 54.
    A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, F. KrauszAppl. Phys. B 72, 977. (2001).Google Scholar
  55. 55.
    H. A. Haus, E. P. IppenOpt. Lett. 26, 1654 (2001).Google Scholar
  56. 56.
    K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, J. YeOpt. Lett. 28, 851 (2003).Google Scholar
  57. 57.
    P. Goorjian, S.T. CundiffOpt. Lett. 29, 1363 (2004).Google Scholar

Authors and Affiliations

  • S.T. Cundiff
    • 1
  1. 1.JILA, National Institute of Standards and Technology and University of ColoradoBoulderUSA

Personalised recommendations