Dissipative Solitons pp 407-428

Part of the Lecture Notes in Physics book series (LNP, volume 661) | Cite as

Stability Analysis of Pulses via the Evans Function: Dissipative Systems

  • T. Kapitula
Chapter

Abstract

Linear stability analysis of pulses is considered in this review chapter. The Evans function is an analytic tool whose zeros correspond to eigenvalues. Herein, the general manner of its construction shown. Furthermore, the construction is done explicitly for the linearization of the nonlinear Schrödinger equation about the 1-soliton solution. In an explicit calculation, it is shown how the Evans function can be used to track the non-zero eigenvalues arising from a dissipative perturbation of the nonlinear Schrödinger equation which arises in the context of pulse propagation in nonlinear optical fibers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Fife and J. McLeod, Arch. Rat. Mech. Anal., 65, 335, (1977).Google Scholar
  2. 2.
    J. Evans, Indiana U. Math. J., 21, 877, (1972).Google Scholar
  3. 3.
    J. Evans, Indiana U. Math. J., 22, 75, (1972).Google Scholar
  4. 4.
    J. Evans, Indiana U. Math. J., 22, 577, (1972).Google Scholar
  5. 5.
    J. Evans, Indiana U. Math. J., 24, 1169, (1975).Google Scholar
  6. 6.
    C.K.R.T. Jones, Trans. AMS, 286, 431, (1984).Google Scholar
  7. 7.
    J. Alexander, R. Gardner and C.K.R.T. Jones, J. Reine Angew. Math., 410, 167, 1990MATHGoogle Scholar
  8. 8.
    T. Kapitula and B. Sandstede, Physica D, 124, 58, (1998).Google Scholar
  9. 9.
    T. Kapitula and B. Sandstede, (to appear in Disc. Cont. Dyn. Sys.), (2003).Google Scholar
  10. 10.
    M. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering, (London Math. Soc. Lecture Note Series, 149, Cambridge U. Press, 1991)Google Scholar
  11. 11.
    M. Ablowitz, D. Kaup, A. Newell and H. Segur, Stud. Appl. Math., 53, 249, (1974)Google Scholar
  12. 12.
    J. Alexander and C.K.R.T. Jones, J. Reine Angew. Math., 446, 49, (1994).Google Scholar
  13. 13.
    J. Alexander and C.K.R.T. Jones, Z. Angew. Math. Phys., 44, 189, (1993).Google Scholar
  14. 14.
    A. Bose and C.K.R.T. Jones, Indiana U. Math. J., 44, 189, (1995).Google Scholar
  15. 15.
    T. Bridges and G. Derks, Proc. Royal Soc. London A, 455, 2427, (1999).Google Scholar
  16. 16.
    T. Bridges and G. Derks, Arch. Rat. Mech. Anal., 156 1, (2001).Google Scholar
  17. 17.
    R. Gardner and K. Zumbrun, Comm. Pure Appl. Math., 51, 797, (1998).Google Scholar
  18. 18.
    T. Kapitula, Physica D, 116, 95, (1998).Google Scholar
  19. 19.
    R. Pego and M. Weinstein, Phil. Trans. R. Soc. Lond. A, 340, 47, (1992).Google Scholar
  20. 20.
    R. Pego and M. Weinstein, Evans’’ function, and Melnikov’s integral, and solitary wave instabilities, In: Differential Equations with Applications to Mathematical Physics, (Academic Press, Boston, 1993), pp.273–286Google Scholar
  21. 21.
    T. Kato, Perturbation Theory for Linear Operators, (Springer-Verlag, Berlin, 1980).Google Scholar
  22. 22.
    J. Swinton, Phys. Lett. A, 163, 57, (1992).Google Scholar
  23. 23.
    T. Bridges and G. Derks, Phys. Lett. A, 251, 363, (1999).Google Scholar
  24. 24.
    T. Bridges, Phys. Rev. Lett., 84, 2614, (2000).Google Scholar
  25. 25.
    B. Sandstede, Handbook of Dynamical Systems, (Elsevier Science, North-Holland, 2002), Vol. 2, Chapter 18, pp. 983–1055.Google Scholar
  26. 26.
    T. Kapitula, J.N. Kutz and B. Sandstede, Indiana U. Math. J., 53, 1095, (2004).Google Scholar
  27. 27.
    W.A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics 629, (Springer-Verlag, Berlin, 1978).Google Scholar
  28. 28.
    D. Peterhof, B. Sandstede and A. Scheel, J. Diff. Eq., 140, 266, (1997).Google Scholar
  29. 29.
    T. Kapitula and B. Sandstede, SIAM J. Math. Anal., 33, 1117, (2002).Google Scholar
  30. 30.
    D. Kaup, SIAM J. Appl. Math., 31, 121, (1976).Google Scholar
  31. 31.
    D. Kaup, Phys. Rev. A, 42, 5689, (1990).Google Scholar
  32. 32.
    D. Kaup, J. Math. Anal. Appl., 54, 849, (1976).Google Scholar
  33. 33.
    J. Yang, J. Math. Phys., 41, 6614, (2000).Google Scholar
  34. 34.
    J. Yang, Phys. Lett. A, 279, 341, (2001).Google Scholar
  35. 35.
    T. Kapitula, P. Kevrekidis and B. Sandstede, Physica D, 195, 263, (2004).Google Scholar
  36. 36.
    T. Kapitula, SIAM J. Math. Anal., 30, 273, (1999).Google Scholar
  37. 37.
    Y. Kivshar, D. Pelinovsky, T. Cretegny and M. Peyrard, Phys. Rev. Lett., 80, 5032, (1998).Google Scholar
  38. 38.
    D. Pelinovsky, Y. Kivshar and V. Afanasjev, Physica D, 116, 121, (1998)Google Scholar
  39. 39.
    W. Van Saarloos and P. Hohenberg, Physica D, 560, 303, (1992).Google Scholar
  40. 40.
    Y. Kodama, M. Romagnoli and S. Wabnitz, Elect. Lett., 28,1981, (1992).Google Scholar
  41. 41.
    T. Kapitula and B. Sandstede, J. Opt. Soc. Am. B, 15, 2757, (1998).Google Scholar

Copyright information

Authors and Affiliations

  • T. Kapitula
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations