Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations

  • N. Akhmediev
  • A. Ankiewicz
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 661)

Abstract

We explain the meaning of dissipative solitons and place them in a framework which shows their use in various scientific fields. Indeed, dissipative solitons form a new paradigm for the investigation of phenomena involving stable structures in nonlinear systems far from equilibrium. We consider those aspects of the problem that can be studied on the basis of a qualitative analysis of nonlinear systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. Akhmediev and A. Ankiewicz, Solitons around us: Integrable, Hamiltonian and Dissipative systems, In: Optical Solitons, Theoretical and Experimental Challenges, Lecture Notes in Physics, vol. 613, Editors: K. Porsezian and V. C. Kurakose, (Springer, Berlin, 2003), pp. 105–126.Google Scholar
  2. 2.
    A. Ankiewicz and Y. Nagai, Chaos, solitons and fractals 13, 1345–58 (2002).Google Scholar
  3. 3.
    J. M. Soto-Crespo, N. Akhmediev and A. Ankiewicz, Phys. Rev. Lett. 85, 2937 (2000).Google Scholar
  4. 4.
    N. Akhmediev and A. Ankiewicz, Solitons of the complex Ginzburg-Landau equation, In Spatial solitons, Editors: S. Trillo, W. Torruellas, Springer Series in Optical Sciences, vol. 82, (Springer, Berlin, 2001), pp. 311–339.Google Scholar
  5. 5.
    J. M. Soto-Crespo and N. Akhmediev, Phys. Rev. E 66, 066610 (2002).Google Scholar
  6. 6.
    K. Maruno, A. Ankiewicz, N. Akhmediev Physica D 176, 44–66 (2003).Google Scholar
  7. 7.
    W. van Saarlos and P. C. Hohenberg, Phys. Rev. Lett. 64, 749 (1990).Google Scholar
  8. 8.
    R. J. Deissler and H. Brand, Phys. Rev. Lett. 72, 478 (1994).Google Scholar
  9. 9.
    P. Kolodner, Phys. Rev. A 44, 6448 (1991).Google Scholar
  10. 10.
    M. Dennin, G. Ahlers and D. S. Cannell, Phys. Rev. Lett. 77, 2475 (1996).Google Scholar
  11. 11.
    K. G. Müller, Phys. Rev. A 37, 4836 (1988).Google Scholar
  12. 12.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, (Springer, Berlin, 1984).Google Scholar
  13. 13.
    N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and beams, (Chapman and Hall, London, 1997).Google Scholar
  14. 14.
    R. Conte, Chapter in Dissipative Solitons.Google Scholar
  15. 15.
    W. Van Saarlos and P. C. Hohenberg, Physica D, 56, 303 (1992).MATHGoogle Scholar
  16. 16.
    J. M. Soto-Crespo, N. Akhmediev and K. Chiang, Phys. Lett. A. 291, 115 (2001).Google Scholar
  17. 17.
    T. Kapitula, Chapter in Dissipative Solitons.Google Scholar
  18. 18.
    N. Akhmediev, J. M. Soto-Crespo and G. Town, Phys. Rev. E, 63, 056602 (2001).Google Scholar
  19. 19.
    M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978).MATHGoogle Scholar
  20. 20.
    S. T. Cundiff, J. M. Soto-Crespo and N. Akhmediev, Phys. Rev. Lett., 88 073903 (2002).Google Scholar
  21. 21.
    N. Akhmediev and J. M. Soto-Crespo, Phys. Lett. A 317, 287 (2003).Google Scholar
  22. 22.
    L. P. Shil’nikov, Sov. Math. Doklady 6, 163 (1965).Google Scholar
  23. 23.
    L. P. Shil’nikov, Math. USSR – Sbornik 10, 91 (1970).Google Scholar
  24. 24.
    C. P. Silva, Shil’nikov’s theorem – a tutorial, IEEE Transactions on circuits and systems, I: Fundamental theory and applications 40, 675 (1993).Google Scholar
  25. 25.
    B. Sandstede, J. Dynamics and Differential Equations 12, 449 (2000).Google Scholar

Copyright information

Authors and Affiliations

  • N. Akhmediev
    • 1
  • A. Ankiewicz
    • 1
  1. 1.Optical Sciences Group, Research School of Physical Sciences and Engineering, Institute of Advanced StudiesAustralian National UniversityCanberraAustralia

Personalised recommendations