Lectures in Astrobiology pp 83-112

Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO) | Cite as

The Origin and Evolution of the Oceans

  • Daniele L. Pinti
Chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Y. (1993). Physical state of the very early Earth. Lithos, 30, 223–235. Google Scholar
  2. Allègre, C.J., Manhès, G., Gopel, C. (1995). The age of the Earth. Geochim. Cosmochim. Acta, 59, 1445–1456. Google Scholar
  3. Allègre, C.J., Staudacher, T., Sarda, P. (1986/87). Rare gas systematic: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett., 81, 127–150. Google Scholar
  4. Beaumont, V., Robert, F. (1999). Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? Precambrian Res., 96, 63–82. Google Scholar
  5. Bickle, M.J. (1986). Implications of melting for stabilisation of the litosphere and heat loss in the Archaean. Earth Planet. Sci. Lett., 80, 314–324. Google Scholar
  6. Bischoff, J.L., Dickson, F.W. (1991). Seawater-basalt interaction at 200 and 500bar. Implications for the origin of heavy-metal deposits and regulation of sewater chemistry. Earth Planet. Sci. Lett., 25, 385–397. Google Scholar
  7. Boato, G. (1954). The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochim. Cosmochim. Acta, 6, 209–220. Google Scholar
  8. Bockelée-Morvan, D. et al. (1988). Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus, 193, 147–162. Google Scholar
  9. Bowring, S.A., Williams, I.S. (1999). Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol., 134, 3–16. Google Scholar
  10. Boyd, S.R. (2001a). Ammonium as a biomarker in Precambrian metasediments. Precambrian Res., 108, 159–173. Google Scholar
  11. Boyd, S.R. (2001b). Nitrogen in future biosphere studies. Chem. Geol., 176, 1–30. Google Scholar
  12. Boyd, S.R., Philippot, P. (1998). Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland. Chem. Geol., 144, 257–268. Google Scholar
  13. Butler, W.A., Jeffery, P.M., Reynolds, J.H., Wasserburg, G.J. (1963). Isotopic variations in terrestrial xenon. J. Geophys. Res., 68, 3283–3291. Google Scholar
  14. Canup, R.M., Asphaug, E. (2001). Origin of Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708–712. Google Scholar
  15. Channer, D.M.D.R., de Ronde, C.E.J., Spooner, E.T.C. (1997). The Cl-Br-I composition of ∼3.23 Ga modified seawater: implications for the geological evolution of ocean halide chemistry. Earth Planet. Sci. Lett., 150, 325–335. Google Scholar
  16. Cleaves, H.J., Miller, S.L. (1998). Oceanic protection of prebiotic organic compounds from UV radiation. Proc. Natl. Acad. Sci. USA, 95, 7260–7263. Google Scholar
  17. Craig, H., Clarke, W.B., Beg, M.A. (1975). Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Lett., 26, 125–132. Google Scholar
  18. Dauphas, N. (2003). The dual origin of the terrestrial atmosphere. Icarus, 165, 326–339. Google Scholar
  19. Dauphas, N., Marty, B. (2001). Inference on the nature and the mass of Earth's late veneer from noble metals and gases. J. Geophys. Res., 107, E 12, 1–7. Google Scholar
  20. Dauphas, N., Robert, F., Marty, B. (2000). The late asteroidal and cometary bombardment of Earth as recorded in water deuterium to protium ratio. Icarus, 148, 508–512. Google Scholar
  21. de Ronde, C.E.J., Channer, D.M.D.R., Faure, K., Bray, C. J., Spooner, T. C. (1997). Fluid chemistry of Archaean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater. Geochim. Cosmochim. Acta, 61, 4025–4042. Google Scholar
  22. Deloule, E., Albarede, F., Sheppard, S.M.F. (1991). Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth Planet. Sci. Lett., 105, 543–553. Google Scholar
  23. Delsemme, A.H. (1999). The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planet. Space Sci., 47, 125–131. Google Scholar
  24. Deming, D. (1999). On the possible influence of extraterrestrial volatiles on Earth's skip0.2em plus0.05em minus0.1em climate and the origin of the oceans. Palaeogeogr. Palaeoclim. Palaeo­ecol., 146, 33–51. Google Scholar
  25. Derry, L.A., Jacobsen, S.B. (1988). The Nd and Sr evolution of Proterozoic seawater. Geophys. Res. Lett., 15, 397–400. Google Scholar
  26. Des Marais, J., Strauss, H., Summons, R.E., Hayes, J.M. (1992). Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359, 605–609. Google Scholar
  27. Drouart, A., Dubrulle, B., Gautier, D., Robert, F. (1999). Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation.Icarus, 140, 59–76. Google Scholar
  28. Eberhardt, P., Reber, M., Krankowski, D., Hodges, R.R. (1995). The D/H and 18O/16O ratios in water from comet P/Haley. Astron. Astrophys., 302, 301–316. Google Scholar
  29. Engrand, C., Deloule, E., Robert, F., Maurette, M., Kurat, G. (1999). Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: An ion microprobe study. Meteorit Planet. Sci., 34, 773–786. Google Scholar
  30. Faure, G. (1991) Principles and Applications of Inorganic Geochemistry: a Comprehensive Textbook for Geology Students. Maxwell Macmillan International. New York, NY. Google Scholar
  31. Foriel, J., Philippot, P., Banks, D., Rey, P., Cauzid, J., Somogyi, A. (2003). Composition of a 3.5 Gyr shallow seawater from the North Pole Dome, Western Australia. Geochim. Cosmochim. Acta, 67, A100. Google Scholar
  32. Frank, L.A., Sigwarth, J.B. (1997). Trails of OH emissions from small comets near Earth. Geophys. Res. Lett., 24, 2435–2438. Google Scholar
  33. Frank, L.A., Sigwarth, J.B., Craven, J.D. (1986). On the influx of small comets into the Earth's atmosphere I. Observations. Geophys. Res. Lett., 13, 303–306. Google Scholar
  34. Gautier, D., Owen, T. (1983). Cosmological implication of helium and deuterium abundances of Jupiter and Saturn. Nature, 302, 215–218. Google Scholar
  35. Geiss, J., Gloecker, G. (1998). Abundance of Deuterium and Helium in the protosolarCloud. Space Science Rev., 84, 239–250. Google Scholar
  36. Halliday, A.N. (2001). Earth science – In the beginning. Nature, 409, 144–145. Google Scholar
  37. Harrison, C.G.A. (1999). Constraints on ocean volume change since the Archaean. Geophys. Res. Lett., 26, 1913–1916. Google Scholar
  38. Holland, H.D. (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press. Princeton, NY. Google Scholar
  39. Holland, H.D. (2002). Volcanic gases, black smokers, and the great oxidation event. Geo­chim. Cosmochim. Acta, 66, 3811–3826. Google Scholar
  40. Holm, N.G., Andersson, E.M. (1998) Hydrothermal systems. In The Molecular Originsof Life. Assembing Pieces of the Puzzle, ed. Brack, A., p. 86–99, Cambridge University Press. Cambridge, UK0.3 Google Scholar
  41. Honda, M., McDougall, I., Patterson, D.B., Doulgeris, A., Clague, D.A. (1991). Possible solar noble gas component in Hawaiian basalts. Nature, 349, 149–151. Google Scholar
  42. Isley, A.E. (1995). Hydrothermal plumes and the delivery of iron to Banded Iron Formation. J. Geol., 103, 169–185. Google Scholar
  43. Kamber, B.S., Webb, G.E. (2001). The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochim. Cosmochim. Acta, 65, 2509–2525. Google Scholar
  44. Kasting, J.F. (1987). Theoretical constraints on oxygen and carbon dioxide concentrations in the precambrian atmosphere. Precambrian Res., 34, 205–229. Google Scholar
  45. Kasting, J.F. (1991). Box models for the evolution of atmospheric oxygen: An update.Palaeogeogr. Palaeoclim. Palaeoecol., 97, 125–131. Google Scholar
  46. Kasting, J.F. (1993). Earth's early atmosphere. Science, 259, 920–926. Google Scholar
  47. Kempe, S, Degens, E.T. (1985). An early soda ocean? Chem. Geol., 53, 95–108. Google Scholar
  48. Kerridge, J.F. (1985). Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta, 49, 1707–1714. Google Scholar
  49. King, E.M., Valley, J.W., Davis, D.W., Edwards, G.R. (1998). Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambrian Res., 92, 365–387. Google Scholar
  50. Knauth, L.P., Lowe, D.R. (1978). Oxygen isotope geochemistry of cherts from the Onverwatch Group (3.4 billion years), Transvaal Group, South Africa, with implications for secular variations in the isotopic composition of cherts. J. Geol., 41, 209–222. Google Scholar
  51. Knauth, P.L. (1994). Petrogenesis of chert. Review Mineral., 29, 233–258. Google Scholar
  52. Knauth, P.L., Roberts, S.K. (1991) The hydrogen and oxygen isotope history of the Si­lur­ian-Permian hydrosphere as determined by direct measurement of fossil water. In Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Vol. Special Publication No. 3, eds. Taylor, H.P., O'Neil, J.R., Kaplan, I.R., p. 91–104, The Geochemical Society. San Antonio; TX. Google Scholar
  53. Krauskopf, K.B., Bird, D.K. (1995) Introduction to Geochemistry. McGraw-Hill.New York, NY. Google Scholar
  54. Lecuyer, C., Gillet, P., Robert, F. (1998). The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol., 145, 249–261. Google Scholar
  55. Li, Y.-H. (2000) A Compendium of Geochemistry; from Solar Nebula to Human Brain.Princeton University Press. Princeton, NY. Google Scholar
  56. Lowe, D.R., Byerly, G.R. (2003). Ironstone Pods in the Archean Barberton greenstone belt, South Africa: Earth's oldest seafloor hydrothermal vents reinterpreted as Quaternary subaerial springs. Geology, 31, 909–912. Google Scholar
  57. Martin, H., Moyen, J.-F. (2002). Secular changes in tonalite-trondhjemite-granodioritecomposition as markers of the progressive cooling of Earth. Geology, 30, 319–322. Google Scholar
  58. Marty, B. (1989). Neon and xenon isotopes in MORB: implications for the earth-atmos­phere evolution. Earth Planet. Sci. Lett., 94, 45–56. Google Scholar
  59. Maurette, M., Duprat, J., Engrand, C., Gounelle, M., Kurat, G., Matrajt, G., Toppani, A. (2000). Accretion of neon, organics, CO_2, nitrogen and water from large interplanetary dust particles on the early Earth. Planet. Space Sci., 48, 1117–1137. Google Scholar
  60. Meier, R., Owen, T.C., Matthews, H.E., Jewitt, D.C., Bockelée-Morvan, D., Biver, N., Crovisier, J., Gautier, D. (1998). A determination of the DH2O/H2O ratio in Comet C/1995 O1 (Hale–Bopp). Science, 279, 842–844. Google Scholar
  61. Mojzsis, S.L., Arrhenius, G., Friend, C.R.L. (1996). Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55–57. Google Scholar
  62. Mojzsis, S.J., Harrison, M.T., Pidgeon, R.T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature, 409, 178–181. Google Scholar
  63. Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F. (2000). Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci., 35, 1309–1320. Google Scholar
  64. Morris, R.C. (1993). Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res., 60, 243–286. Google Scholar
  65. Murakami, T., Utsunomiya, S., Imazu, Y., Prasad, N. (2001). Direct evidence of lateArchean to early Proterozoic anoxic atmosphere from a product of 2.5 Ga old weathering. Earth Planet. Sci. Lett., 184, 523–528. Google Scholar
  66. Nijman, W., de Bruijne, H., Valkering, M.E. (1998). Growth fault control of Early Archean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambrian Res., 88, 25–52. Google Scholar
  67. Nisbet, E.G., Cheadle, M.J., Arndt, N.T., Bickle, M.J. (1993). Constraining the potential temperature of the archaean mantle – a review of the evidence from komatiites. Lithos, 30, 291–307. Google Scholar
  68. Nisbet, E.G., Sleep, N.H. (2001). The habitat and nature of early life. Nature, 409, 1083–1091. Google Scholar
  69. Nutman, A.P., Mojzsis, S.J., Friend, C.R.L. (1997). Recognition of 850Ma water-lain sediments in West Greenland and their significance for the early Archean Earth. Geo­chim. Cosmochim. Acta, 61, 2575–2484. Google Scholar
  70. Ottonello, G. (1997) Principles of Geochemistry. Columbia University Press. NewYork, NY. Google Scholar
  71. Owen, T.C. (1998) The origin of the atmosphere. In The Molecular Origins of Life, ed.Brack, A., p. 13–34, Cambridge University Press. Cambridge, UK. Google Scholar
  72. Owen, T.C., Bar-Nun, A. (1995). Comets, impacts, and atmospheres. Icarus, 116, 215–226. Google Scholar
  73. Ozima, M., Podosek, F.A. (2001) Noble Gas Geochemistry. 2nd edition. Cambridge University Press. Cambridge, UK. Google Scholar
  74. Ozima, M., Zanshu, S. (1988). Solar-type Ne in Zaire cubic diamonds. Geochim. Cosmo­chim. Acta, 52, 19–25. Google Scholar
  75. Peck, W.H., King, E.M.,Valley, J.W. (2000). Oxygen isotope perspective on Precambrian crustal growth and maturation. Geology, 28, 363–366. Google Scholar
  76. Peck, W.H., Valley, J.W., Wilde, S.A., Graham, C.M. (2001). Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high 18O continental crust and oceans in the Early Archean. Geochim. Cosmochim. Acta, 65,4215–4229. Google Scholar
  77. Pepin, R.O. (1991). On the origin and ealy evolution of terrestrial planetray atmospheres and meteoritic volatiles. Icarus, 92, 2–79. Google Scholar
  78. Peters, K.E., Sweeney, R.E., Kaplan, I.R. (1978). Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr., 23, 598–604. Google Scholar
  79. Pidgeon, R.T., Wilde, S.A. (1998). The interpretation of complex zircon U-Pb systems in Archaean granitoids and gneisses from the Jack Hills, Narryer gneiss Terrane, Western Australia. Precambrian Res., 91, 309–332. Google Scholar
  80. Pinti, D.L. (2002). The isotopic record of Archean nitrogen and the evolution of the early earth. Trends in Geochemistry, 2, 1–17. Google Scholar
  81. Pinti, D.L. Hashizume, K. (2001). N-15-depleted nitrogen in Early Archean kerogens: clues on ancient marine chemosynthetic-based ecosystems? A comment to Beaumont, V.,Robert, F., 1999. Precambrian Res., 96, 62–82. Precambrian Res., 105, 85–88. Google Scholar
  82. Pinti, D.L., Hashizume, K., Matsuda, J. (2001). Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: Clues on the chemical state of the Archean ocean and the deep biosphere. Geochim. Cosmochim. Acta, 65, 2301–2315. Google Scholar
  83. Pinti, D.L., Hashizume, K., Philippot, P., Foriel, J., Rey, P. (2003). Nitrogen quest inArchean metasediments of Pilbara, Australia. Geochim. Comochim. Acta, 67, A379. Google Scholar
  84. Poreda, R.J., Farley, K.A. (1992). Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett., 113, 129–144. Google Scholar
  85. Robert, F. (2001) L'origine de l'eau dans le Système Solaire telle qu'elle est enregistrée par son rapport isotopique D/H. In L'environnement de la Terre Primitive, eds. Gargaud, M., Despois, D., Parisot, J.-P., p. 79–90, Presses Universitaires de Bordeaux. Bordeaux, France. Google Scholar
  86. Robert, F., Epstein, S. (1982). The concentration and isotopic composition of hydrogen, carbon and nitrogen in the carbonaceous meteorites. Geochim. Cosmochim. Acta, 46, 81–95. Google Scholar
  87. Robert, F., Gautier, D., Dubrulle, B. (2000). The solar system D/H ratio: Observations and theories. Space Sci. Rev., 92, 201–224. Google Scholar
  88. Roedder, E. (1984) Fluid Inclusions. Mineralogical Society of America. Washington D.C. Google Scholar
  89. Rosing, M.T., Rose, N.M., Bridgwater, D., Thomsen, H.S. (1996). Earliest part of Earth's stratigraphic record: A reappraisal of the > 3.7Ga Isua (Greenland) supracrustal sequence. Geology, 24, 43–46. Google Scholar
  90. Rothschild, L.J., Mancinelli, R.L. (2001). Life in extreme environments. Nature, 409, 1092–1101. Google Scholar
  91. Rubey, W.W. (1951). Geologic history of seawater: An attempt to state the problem. GSA Bull., 62, 1111–1147. Google Scholar
  92. Sarda, P., Staudacher, Th., Allègre, C.J. (1988). Neon isotopes in submarine basalts. Earth Planet. Sci. Lett., 91, 73–88. Google Scholar
  93. Sleep, N.H., Zahnle, K. (2001). Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res., 106, 1373–1399. Google Scholar
  94. Sleep, N.H., Zahnle, K., Neuhoff, P.S. (2001). Initiation of clement surface conditions on the earliest Earth. Proc. Natl. Acad. Sci. USA, 98, 3666–3672. Google Scholar
  95. Staudacher, T., Allegre, C.J. (1982). Terrestrial xenology. Earth Planet. Sci. Lett., 60, 389–406. Google Scholar
  96. Staudacher, T., Sarda, P., Richardson, S.H., Allègre, C.J., Sagna, I., Dmitriev, L.V. (1989). Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14^∘N: geodynamic consequences. Earth Planet. Sci. Lett., 96, 119–133. Google Scholar
  97. Stetter, K.O. (1998) Hyperthermophiles and their possible role as ancestors of modern life. In The Molecular Origins of Life, ed. Brack, A., p. 315–335, Cambridge University Press. Cambridge, UK. Google Scholar
  98. Sugitani, K. (1992). Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally-derived iron and silica. Precambrian Res., 57, 21–47. Google Scholar
  99. Tajika, E., Matsui, T. (1993). Degassing history and carbon cycle of the Earth: From an impact-induced steam atmosphere to the present atmosphere. Lithos, 30, 267–280. Google Scholar
  100. Taylor, S.R., McLennan, S.M. (1995). The geochemical evolution of the continental crust. Rev. Geophys., 33, 241–265. Google Scholar
  101. van Zuilen, M.A., Lepland, A., Arrhenius, G. (2002) Reassessing the evidence for the earliest traces of life, Nature, 418, 627–630. Google Scholar
  102. Valley, J.W., Chiarenzelli, J.R., McLelland, J.M. (1994). Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett., 126, 187–206. Google Scholar
  103. Valley, J.W., Kinny, P.D., Shulze, D., Spicuzza, M.J. (1998). Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol., 133, 1–11. Google Scholar
  104. Valley, J.W., Peck, W.H., King, E.M., Wilde, S.A. (2002). A cool early Earth. Geology, 30, 351–354. Google Scholar
  105. Veizer, J., Compston, W. (1976). 87Sr/86Sr in Precambrian carbonates as an index of crustal evolution. Geochim. Cosmochim. Acta, 40, 905–914. Google Scholar
  106. Veizer, J., Hoefs, J., Ridler, R.H., Jensen, L.S., Lowe, D.R. (1989). Geochemistry of Precambrian carbonates: I. Archean hydrothermal systems. Geochim. Cosmochim. Acta, 53, 845–857. Google Scholar
  107. Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409, 175–178. Google Scholar
  108. Yang, W., Holland, H.D., Rye, R. (2002). Evidence for low or no oxygen in the late Archean atmosphere from the ∼2.76 Ga Mt. Roe #2 paleosol, Western Australia: Part 3. Geochim. Cosmochim. Acta, 66, 3707–3718. Google Scholar
  109. Zhang, Y.X., Zindler, A. (1993). Distribution and evolution of carbon and nitrogen in earth. Earth Planet. Sci. Lett., 117, 331–345. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Daniele L. Pinti
    • 1
  1. 1.GEOTOP-UQAM-McGillMontréalCanada

Personalised recommendations