Advertisement

Abstract

In this paper we investigate the Lie model of Lie sphere geometry using Clifford algebra. We employ it to Euclidean geometric problems involving oriented contact to simplify algebraic description and computation.

Keywords

Euclidean geometry Lie sphere geometry Clifford algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, vol. 3. Springer, Berlin (1929)zbMATHGoogle Scholar
  2. 2.
    Cecil, T.E.: Lie Sphere Geometry. Springer, New York (1992)zbMATHGoogle Scholar
  3. 3.
    Cecil, T.E., Chern, S.-S.: Tautness and Lie sphere geometry. Math. Ann. 278, 381–399 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Havel, T., Dress, A.: Distance geometry and geometric algebra. Found. Phys. 23, 1357–1374 (1993)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel, Dordrecht, Boston (1984)zbMATHGoogle Scholar
  6. 6.
    Hestenes, D.: The design of linear algebra and geometry. Acta Appl. Math. 23, 65–93 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Li, H.: Some applications of Clifford algebra to geometries. In: Wang, D., Yang, L., Gao, X.-S. (eds.) ADG 1998. LNCS (LNAI), vol. 1669, pp. 156–179. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Heidelberg (2000a)Google Scholar
  9. 9.
    Li, H., Hestenes, D., Rockwood, A.: Spherical conformal geometry with geometric algebra. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Heidelberg (2000b)Google Scholar
  10. 10.
    Li, H., Hestenes, D., Rockwood, A.: A universal model for conformal geometries of Euclidean, spherical and double-hyperbolic spaces. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Heidelberg (2000c)Google Scholar
  11. 11.
    Lie, S.: Über Komplexe, inbesondere Linien- und Kugelkomplexe, mit Anwendung auf der Theorie der partieller Differentialgleichungen. Math. Ann. 5, 145–208, 209–256 (1872) (Ges. Abh. 2: 1–121)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Pinkall, U.: Dupin’sche Hyperflächen. Dissertation, Univ. Freiburg (1981)Google Scholar
  13. 13.
    Wu, W.-T.: Mechanical Theorem Proving in Geometries: Basic Principle. Springer, Wien (1994) (translated from Chinese edition 1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Hongbo Li
    • 1
  1. 1.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingP. R. China

Personalised recommendations