Abstract

The Internet is a giant semiotic system. It is a massive collection of Peirce’s three kinds of signs: icons, which show the form of something; indices, which point to something; and symbols, which represent something according to some convention. But current proposals for ontologies and metadata have overlooked some of the most important features of signs. A sign has three aspects: it is (1) an entity that represents (2) another entity to (3) an agent. By looking only at the signs themselves, some metadata proposals have lost sight of the entities they represent and the agents – human, animal, or robot – which interpret them. With its three branches of syntax, semantics, and pragmatics, semiotics provides guidelines for organizing and using signs to represent something to someone for some purpose. Besides representation, semiotics also supports methods for translating patterns of signs intended for one purpose to other patterns intended for different but related purposes. This article shows how the fundamental semiotic primitives are represented in semantically equivalent notations for logic, including controlled natural languages and various computer languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tim, B.-L., Fielding, R., Masinter, L. (eds.): Uniform Resource Identifiers (URI): Generic Syntax (1998); Internet RFC 2396Google Scholar
  2. 2.
    Tim, B.-L.: The Semantic Toolbox: Building Semantics on top of XML-RDF (1999), http://www.w3.org/DesignIssues/Toolbox.html
  3. 3.
    Bray, T.: RDF and Metadata (1998), http://www.xml.com/xml/pub/98/06/rdf.html
  4. 4.
    Bray, T., Hollander, D., Layman, A. (eds.): Namespaces in XML (1999); W3 TR REC-xml-namesGoogle Scholar
  5. 5.
    Cyre, W.R., Balachandar, S., Thakar, A.: Knowledge visualization from conceptual structures. In: Tepfenhart, W.M., Dick, J.P., Sowa, J.F. (eds.) ICCS 1994. LNCS, vol. 835, pp. 275–292. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Cyre, W.R.: Capture, integration, and analysis of digital system requirements with conceptual graphs. IEEE Trans. Knowledge and Data Engineering 9(1), 8–23 (1997)CrossRefGoogle Scholar
  7. 7.
    Cyre, W.R., Hess, J., Gunawan, A., Sojitra, R.: A Rapid Modeling Tool for Virtual Prototypes. In: 1999 Workshop on Rapid System Prototyping, Clearwater, FL (1999)Google Scholar
  8. 8.
    Frege, G.: Begriffsschrift (1879); English Translation in van Heijenoort, J.(ed.): From Frege to Gödel, pp. 1–82. Harvard University Press, Cambridge (1967)Google Scholar
  9. 9.
    Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English – not just another logic specification language. In: Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559, p. 1. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English (ACE), Language Manual, Version 3.0, Technical Report ifi-99.03, University of Zurich (1999)Google Scholar
  11. 11.
    Genesereth, M.R., Fikes, R. (eds.): Knowledge Interchange Format (KIF) (1998), draft proposed American National Standard, NCITS.T2/98-004Google Scholar
  12. 12.
    Gerbé, O., Perron, M.: Presentation definition language using conceptual graphs. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS(LNAI), vol. 954. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Gerbé, O., Guay, B., Perron, M.: Using conceptual graphs for methods modeling. In: Eklund, P., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS (LNAI), vol. 1115, pp. 161–174. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Gerbé, O.: Conceptual graphs for corporate knowledge management. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 474–488. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Gerbé, O., Keller, R.K., Mineau, G.W.: Conceptual graphs for representing business processes in corporate memories. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 401–415. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Gerbé, O., Kerhervé, B.: Modeling and metamodeling requirements for knowledge management. In: Proc. of OOPSLA 1998 Workshops, Vancouver (1998)Google Scholar
  17. 17.
    Gerbé, O.: Un Mod‘ele uniforme pour la Modélisation et la Métamodélisation d’une Mémoire d’Entreprise, PhD Dissertation, Département d’informatique et de recherché opérationelle, Université de Montréal (2000)Google Scholar
  18. 18.
    Heflin, J., Hendler, J., Luke, S.: SHOE: A Knowledge Representation Language for Internet Applications, Technical Report CS-TR-4078 (UMIACS TR-99-71), Dept. of Computer Science, University of Maryland at College Park (1999)Google Scholar
  19. 19.
    Kamp, H.: Events, discourse representations, and temporal references. Langages 64, 39–64 (1981a)CrossRefGoogle Scholar
  20. 20.
    Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.A.G., Janssen, T.M.V., Stokhof, M.B.J. (eds.) Formal Methods in the Study of Language, Mathematical Centre Tracts, Amsterdam, pp. 277–322 (1981b)Google Scholar
  21. 21.
    Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)Google Scholar
  22. 22.
    Lassila, O., Swick, R.R. (eds.): Resource Description Framework (RDF) Model and Syntax Specification (1999), http://www.w3.org/TR/REC-rdfsyntax
  23. 23.
    Ogden, C.K., Richards, I.A.: The Meaning of Meaning. Harcourt, Brace and World, New York (1923) (8th edn. 1946)Google Scholar
  24. 24.
    Peirce, C.S.: On the algebra of logic. American Journal of Mathematics 7, 180–202 (1885)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Peirce, C.S.(CP): Collected Papers of C. S. Peirce. In: Hartshorne, C., Weiss, P., Burk, A. (eds.) 8 vols. Harvard University Press, Cambridge (1931-1958)Google Scholar
  26. 26.
    Phipps, S.: Meaning, not Markup. XML Journal 1(1), 66 (2000)Google Scholar
  27. 27.
    Rassinoux, A.-M.: Extraction et Représentation de la Connaissance tirée de Textes Médicaux. Éditions Systèmes et Information, Geneva (1994)Google Scholar
  28. 28.
    Rassinoux, A.-M., Baud, R.H., Lovis, C., Wagner, J.C., Scherrer, J.-R.: Tuning up conceptual graph representation for multilingual natural language processing in medicine. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 390–397. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. 29.
    St. Laurent, S.: XML: A Primer, 2nd edn. M & T Books, Foster City (1999)Google Scholar
  30. 30.
    de Saussure, F.: Cours de Linguistique Générale (1916); Translated by Baskin, W.: Course in General Linguistics. Philosophical Library, New York (1959)Google Scholar
  31. 31.
    Schwitter, R.: Kontrolliertes Englisch für Anforderungsspezifikationen. Studentdruckerei, Zurich (1998)Google Scholar
  32. 32.
    Skuce, D., Lethbridge, T.: CODE4: Aunified system for managing conceptual knowledge. International J. of Human-Computer Studies 42, 413–451 (1995)CrossRefGoogle Scholar
  33. 33.
    Skuce, D.: Intelligent knowledge management: integrating documents, knowledge bases, and linguistic knowledge. In: Proceedings of KAW 1998, Calgary (1998)Google Scholar
  34. 34.
    Skuce, D.: Integrating web-based documents, shared knowledge bases, and information retrieval for user help. Computational Intelligence 16(1) (2000)Google Scholar
  35. 35.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  36. 36.
    Sowa, J.F. (ed.): Conceptual Graphs (1998); draft proposed American National Standard, NCITS.T2/98-003Google Scholar
  37. 37.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove (2000)Google Scholar
  38. 38.
    Sowa, J.F., Way, E.C.: Implementing a semantic interpreter using conceptual graphs. IBM Journal of Research and Development 30(1), 57–69 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • John F. Sowa

There are no affiliations available

Personalised recommendations