Advertisement

Binary Reachability Analysis of Discrete Pushdown Timed Automata

  • Zhe Dang
  • Oscar H. Ibarra
  • Tevfik Bultan
  • Richard A. Kemmerer
  • Jianwen Su
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1855)

Abstract

We introduce discrete pushdown timed automata that are timed automata with integer-valued clocks augmented with a pushdown stack. A configuration of a discrete pushdown timed automaton includes a control state, finitely many clock values and a stack word. Using a pure automata-theoretic approach, we show that the binary reachability (i.e., the set of all pairs of configurations (α,β), encoded as strings, such that α can reach β through 0 or more transitions) can be accepted by a nondeterministic pushdown machine augmented with reversal-bounded counters (NPCM). Since discrete timed automata with integer-valued clocks can be treated as discrete pushdown timed automata without the pushdown stack, we can show that the binary reachability of a discrete timed automaton can be accepted by a nondeterministic reversal-bounded multicounter machine. Thus, the binary reachability is Presburger. By using the known fact that the emptiness problem is decidable for reversal-bounded NPCMs, the results can be used to verify a number of properties that can not be expressed by timed temporal logics for discrete timed automata and CTL* for pushdown systems.

Keywords

Model Check Safety Property Defense Advance Research Project Agency Boolean Combination Symbolic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Courcoibetis, C., Dill, D.: Model-checking in dense real time. Information and Computation 104, 2–34 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: Automata for modeling real-time systems. Theoretical Computer Science 126, 183–236 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41, 181–204 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Bouajjani, A., Echahed, R., Robbana, R.: On the Automatic Verification of Systems with Continuous Variables and Unbounded Discrete Data Structures. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp. 64–85. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Coen-Porisini, A., Ghezzi, C., Kemmerer, R.: Specification of real-time systems using ASTRAL. IEEE Transactions on Software Engineering 23, 572–598 (1997)CrossRefGoogle Scholar
  9. 9.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Comon, H., Jurski, Y.: Timed Automata and the Theory of Real Numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Safety property analysis of reversal-bounded pushdown multicounter machines (1999) (manuscript)Google Scholar
  12. 12.
    Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems. In: INFINITY 1997 (1997)Google Scholar
  13. 13.
    Gurari, E., Ibarra, O.: The Complexity of Decision Problems for Finite-Turn Multicounter Machines. J. Computer and System Sciences 22, 220–229 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-time Systems. Information and Computation 111, 193–244 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25, 116–133 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    McMillan, K.L.: Symbolic model checking - an approach to the state explosion problem, PhD thesis, Carnegie Mellon University (1992)Google Scholar
  17. 17.
    Walukiewicz, I.: Pushdown processes: games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Wang, F.: Efficient Data Structure for fully Symbolic Verification of Real-Time Software Systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, p. 157. Springer, Heidelberg (2000) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Zhe Dang
    • 1
  • Oscar H. Ibarra
    • 1
  • Tevfik Bultan
    • 1
  • Richard A. Kemmerer
    • 1
  • Jianwen Su
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations