Advertisement

Regular Model Checking

  • Ahmed Bouajjani
  • Bengt Jonsson
  • Marcus Nilsson
  • Tayssir Touili
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1855)

Abstract

We present regular model checking, a framework for algorithmic verification of infinite-state systems with, e.g., queues, stacks, integers, or a parameterized linear topology. States are represented by strings over a finite alphabet and the transition relation by a regular length-preserving relation on strings. Major problems in the verification of parameterized and infinite-state systems are to compute the set of states that are reachable from some set of initial states, and to compute the transitive closure of the transition relation. We present two complementary techniques for these problems. One is a direct automata-theoretic construction, and the other is based on widening. Both techniques are incomplete in general, but we give sufficient conditions under which they work. We also present a method for verifying ω-regular properties of parameterized systems, by computation of the transitive closure of a transition relation.

Keywords

Model Check Transition Relation Transitive Closure Reachable State Reachability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. ABJ98.
    Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with unbounded, lossy info channels. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998)Google Scholar
  2. ABJN99.
    Abdulla, P.A., Bouajjani, A., Jonsson, B., Nilsson, M.: Handling global conditions in parameterized system verification. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 134–145. Springer, Heidelberg (1999)Google Scholar
  3. BCMD92.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Symbolic model checking: 1020 states and beyond. Information and Computation 98, 142–170 (1992)Google Scholar
  4. BEM97.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pus- hdown Automata: Application to Model Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, Springer, Heidelberg (1997)Google Scholar
  5. BG96.
    Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with infinite state spaces using QDDs. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 1–12. Springer, Heidelberg (1996)Google Scholar
  6. BGWW97.
    Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302. Springer, Heidelberg (1997)Google Scholar
  7. BH97.
    [BH97] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of _fo-channel systems with nonregular sets of con_gurations. In Proc. ICALP ’97, volume 1256 of LNCS, 1997. Google Scholar
  8. BW94.
    Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)Google Scholar
  9. Cau92.
    Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer Science 106(1), 61–86 (1992)Google Scholar
  10. CC77.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified model for static analysis of programs by construction or approximation of fixpoints. In: Proc. 4th POPL, pp. 238–252 (1977)Google Scholar
  11. CH78.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL 1978. ACM, New York (1978)Google Scholar
  12. CJ98.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg (1998)Google Scholar
  13. FO97.
    Fribourg, L., Olsén, H.: Reachability sets of parametrized rings as regular languages. In: Proc. 2nd INFINITY 1997. Electronical Notes in Theoretical Computer Science, vol. 9. Elsevier Science Publishers, Amsterdam (1997)Google Scholar
  14. FWW97.
    Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems (extended abstract). In: Proc. Infinity 1997, Electronic Notes in Theoretical Computer Science, Bologna (August 1997)Google Scholar
  15. Hal93.
    Halbwachs, N.: Delay Analysis in Synchronous Programs. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697. Springer, Heidelberg (1993)Google Scholar
  16. [HJJ+96]
    Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019. Springer, Heidelberg (1995) (to appear)Google Scholar
  17. JN00.
    Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying infinite-state systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, p. 220. Springer, Heidelberg (2000)Google Scholar
  18. [KMM+97]
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 424–435. Springer, Heidelberg (1997)Google Scholar
  19. KMMG97.
    Kelb, P., Margaria, T., Mendler, M., Gsottberger, C.: Mosel: A flexible toolset for monadic second order logic. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 183–202. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. LHR97.
    Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized linear networks of processes. In: 24th POPL, Paris (January 1997)Google Scholar
  21. PS00.
    Pnueli, A., Shahar, E.: Liveness and acceleration in parameterized verification. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)Google Scholar
  22. Sis97.
    Prasad Sistla, A.: Parametrized verification of linear networks using automata as invariants. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 412–423. Springer, Heidelberg (1997)Google Scholar
  23. VW86.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to au- tomatic program verification. In: Proc. 1st LICS, June 1986, pp. 332–344 (1986)Google Scholar
  24. WB98.
    Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ahmed Bouajjani
    • 1
  • Bengt Jonsson
    • 2
  • Marcus Nilsson
    • 2
  • Tayssir Touili
    • 1
  1. 1.LiafaUniv. Paris 7Paris Cedex 05France
  2. 2.Dept. of Computer SystemsUppsalaSweden

Personalised recommendations