Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking

  • Poul F. Williams
  • Armin Biere
  • Edmund M. Clarke
  • Anubhav Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1855)

Abstract

In this paper we show how to do symbolic model checking using Boolean Expression Diagrams (BEDs), a non-canonical representation for Boolean formulas, instead of Binary Decision Diagrams (BDDs), the traditionally used canonical representation. The method is based on standard fixed point algorithms, combined with BDDs and SAT-solvers to perform satisfiability checking. As a result we are able to model check systems for which standard BDD-based methods fail. For example, we model check a liveness property of a 256 bit shift-and-add multiplier and we are able to find a previously undetected bug in the specification of a 16 bit multiplier. As opposed to Bounded Model Checking (BMC) our method is complete in practice.

Our technique is based on a quantification procedure that allows us to eliminate quantifiers in Quantified Boolean Formulas (QBF). The basic step of this procedure is the up-one operation for BEDs. In addition we list a number of important optimizations to reduce the number of basic steps. In particular the optimization rule of quantification-by-substitution turned out to be very useful: \(\exists x : g \wedge (x \Leftrightarrow f) \equiv g[f/x]\). The rule is used (1) during fixed point iterations, (2) for deciding whether an initial set of states is a subset of another set of states, and finally (3) for iterative squaring.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT solvers. In: Tools and Algorithms for the Analysis and Construction of Systems (TACAS) (2000)Google Scholar
  2. 2.
    Andersen, H.R., Hulgaard, H.: Boolean expression diagrams. Information and Computation (to appear)Google Scholar
  3. 3.
    Andersen, H.R., Hulgaard, H.: Boolean expression diagrams. In: IEEE Symposium on Logic in Computer Science (LICS) (July 1997)Google Scholar
  4. 4.
    Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: Proc. ACM/IEEE Design Automation Conference, DAC (1999)Google Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying safety properties of a PowerPC microprocessor using symbolic model checking without BDDs. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 60–71. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Brglez, F., Fujiware, H.: A neutral netlist of 10 combinational benchmarks circuits and a target translator in Fortran. In: Special Session International Symposium on Circuits and Systems (ISCAS) (1985)Google Scholar
  8. 8.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)MATHCrossRefGoogle Scholar
  9. 9.
    Bryant, R.E.: Binary decision diagrams and beyond: Enabling technologies for formal verification. In: Proc. International Conf. Computer-Aided Design (ICCAD), November 1995, pp. 236–243 (1995)Google Scholar
  10. 10.
    Burch, J.R., Clarke, E.M., Long, D.E., MacMillan, K.L., Dill, D.L.: Symbolic model checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 13(4), 401–424 (1994)CrossRefGoogle Scholar
  11. 11.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation  98(2), 142–170 (1992)Google Scholar
  12. 12.
    Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic model verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finitestate concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)MATHCrossRefGoogle Scholar
  14. 14.
    Hulgaard, H., Williams, P.F., Andersen, H.R.: Equivalence checking of combinational circuits using boolean expression diagrams. IEEE Transactions on Computer Aided Design (July 1999)Google Scholar
  15. 15.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48 (1999)Google Scholar
  16. 16.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)MATHGoogle Scholar
  17. 17.
    Sheeran, M., Stålmarck, G.: A tutorial on stålmarck’s proof procedure for propositional logic. In: Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 82–99. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Zhang, H.: SATO: An efficient propositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Poul F. Williams
    • 1
  • Armin Biere
    • 2
  • Edmund M. Clarke
    • 3
  • Anubhav Gupta
    • 3
  1. 1.Department of Information TechnologyTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of Computer Science, Institute of Computer SystemsETH ZentrumZürichSwitzerland
  3. 3.School of Computer ScienceCarnegie Mellon UniversityPittsburghU.S.A.

Personalised recommendations