Variants of First-Order Modal Logics

  • Marta Cialdea Mayer
  • Serenella Cerrito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1847)


In this paper we study proof procedures for some variants of first order modal logics, where domains may be either cumulative or freely varying and terms may be either rigid or non-rigid, local or non-local. We define both ground and free variable tableau methods, parametric with respect to the variants of the considered logics. The treatment of each variant is equally simple and is based on the annotation of functional symbols by natural numbers, conveying some semantical information on the worlds where they are meant to be interpreted.


Modal Logic Sequent Calculus Local Term Modal Language Base Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Manna, Z.: Modal theorem proving. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 172–189. Springer, Heidelberg (1986)Google Scholar
  2. 2.
    Artosi, A., Benassi, P., Governatori, G., Rotolo, A.: Shakespearian modal logic: A labelled treatment of modal identity. Advances in Modal Logic, 1–21 (1998)Google Scholar
  3. 3.
    Auffray, Y., Enjalbert, P.: Modal theorem proving: an equational viewpoint. J. of Logic and Computation 2, 247–297 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baaz, M., Fermüller, C.G.: Non-elementary speedups between different versions of tableaux. In: Baumgartner, P., Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 217–230. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Basin, D., Matthews, M., Viganò, L.: Labelled modal logics: Quantifiers. J. of Logic, Language and Information 7(3), 237–263 (1998)zbMATHCrossRefGoogle Scholar
  6. 6.
    Beckert, B., Hähnle, R., Schmitt, P.H.: The even more liberalized δ-rule in free variable semantic tableaux. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 108–119. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  7. 7.
    Cialdea, M.: Resolution for some first order modal systems. Theoretical Computer Science 85, 213–229 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cialdea, M., Fariñas del Cerro, L.: A modal Herbrand’s property. Z. Math. Logik Grundlag. Math. 32, 523–539 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel Publ. Co., Dordrechtz (1983)zbMATHGoogle Scholar
  10. 10.
    Fitting, M.: First-order modal tableaux. J. of Automated Reasoning 4, 191–213 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fitting, M.: On quantified modal logic. Fundamenta Informaticae 39, 105–121 (1999)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Garson, J.W.: Quantification in modal logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 249–307. Reidel Publ. Co., Dordrechtz (1984)Google Scholar
  13. 13.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, G., Hähnle, R., Posegga, J. (eds.) Handbook of tableau methods. Kluwer, Dordrecht (1999)Google Scholar
  14. 14.
    Hähnle, R., Schmitt, P.H.: The liberalized δ-rule in free variable semantic tableaux. J. of Automated Reasoning 13, 211–222 (1994)zbMATHCrossRefGoogle Scholar
  15. 15.
    Jackson, P., Reichgelt, H.: A general proof method for first-order modal logic. In: IJCAI 1987, pp. 942–944. Morgan Kaufmann, San Francisco (1987)Google Scholar
  16. 16.
    Konolige, K.: Resolution and quantified epistemic logics. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 199–208. Springer, Heidelberg (1986)Google Scholar
  17. 17.
    Mints, G.: Indexed systems of sequents and cut-elimination. J. of Philosophical Logic 26, 671–696 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ohlbach, H.J.: Semantics based translation methods for modal logics. J. of Logic and Computation 1(5), 691–746 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Wallen, L.A.: Automated Deduction in Nonclassical Logics: Efficient Matrix Proof Methods for Modal and Intuitionistic Logics. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Marta Cialdea Mayer
    • 1
  • Serenella Cerrito
    • 2
  1. 1.Dipartimento di Informatica e AutomazioneUniversità Roma Tre 
  2. 2.L.R.I.Université de Paris-Sud 

Personalised recommendations