ANTS 2000: Algorithmic Number Theory pp 169-184

# On Powers as Sums of Two Cubes

• Nils Bruin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1838)

## Abstract

In a paper of Kraus, it is proved that x 3 + y 3 = z p for p ≥17 has only trivial primitive solutions, provided that p satisfies a relatively mild and easily tested condition. In this article we prove that the primitive solutions of x 3 + y 3 = z p with p = 4,5,7,11,13, correspond to rational points on hyperelliptic curves with Jacobians of relatively small rank. Consequently, Chabauty methods may be applied to try to find all rational points. We do this for p = 4,5, thus proving that x 3 + y 3 = z 4 and x 3 + y 3 = z 5 have only trivial primitive solutions. In the process we meet a Jacobian of a curve that has more 6-torsion at any prime of good reduction than it has globally. Furthermore, some pointers are given to computational aids for applying Chabauty methods.

## Keywords

Elliptic Curve Rational Point Elliptic Curf Abelian Variety Diophantine Equation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Batut, C., Belabas, K., Bernardi, D., Cohen, H., Olivier, M.: PARI-GP. Avaliable, from ftp://megrez.math.u-bordeaux.fr/pub/pari
2. 2.
Beukers, F.: The Diophantine equation Ax p + By q = Cz r. Duke Math. J. 91(1), 61–88 (1998)
3. 3.
Bruin, N.: Chabauty Methods and Covering Techniques applied to Generalised Fermat Equations. PhD thesis, Universiteit Leiden (1999)Google Scholar
4. 4.
Bruin, N.: The diophantine equations x 2 ± y 4 = ±z 6 and x 2 + y 8 = z 3. Compositio Math. 118, 305–321 (1999)
5. 5.
Cassels, J.W.S., Flynn, E.V.: Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2. LMS–LNS 230. Cambridge University Press, Cambridge (1996)
6. 6.
Chabauty Sur, C.: les points rationnels des variétés algébriques dont l’irrégularité est supvrieure à la dimension. C. R. Acad. Sci. Paris 212, 1022–1024 (1941)
7. 7.
Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: KANT V4. J. Symbolic Comput. 24(3-4), 267–283 (1997), Available from ftp://ftp.math.tu-berlin.de/pub/algebra/Kant/Kash
8. 8.
Darmon, H., Granville, A.: On the equations zm = F( x, y) and Axp + Byq = Czrr. Bull. London Math. Soc. 27(6), 513–543 (1995)
9. 9.
Darmon, H., Merel, L.: Winding quotients and some variants of Fermat’s last theorem. J. Reine Angew. Math. 490, 81–100 (1997)
10. 10.
Flynn, E.V.: A flexible method for applying chabauty’s theorem. Compositio Math-ematica 105, 79–94 (1997)
11. 11.
12. 12.
Kraus, A.: Sur l’équation a 3 + b 3 = c p cp. Experiment. Math. 7(1), 1–13 (1998)
13. 13.
Daniel Mauldin, R.: A generalization of Fermat’s last theorem: the Beal conjecture and prize problem. Notices Amer. Math. Soc. 44(11), 1436–1437 (1997)
14. 14.
Odlyzko, A.M.: Tables of discriminant bounds (1976), available at, http://www.research.att.com/~amo/unpublished/index.html
15. 15.
Odlyzko, A.M.: Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux (2) 2(1), 119–141 (1990)
16. 16.
Poonen, B., Schaefer, E.F.: Explicit descent for jacobians of cyclic covers of the projective line. J. reine angew. Math. 488, 141–188 (1997)
17. 17.
Schaefer, E.F.: Computing a Selmer group of a Jacobian using functions on the curve. Math. Ann. 310(3), 447–471 (1998)
18. 18.
Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM 106. Springer, Heidelberg (1986)Google Scholar
19. 19.
Stoll, M.: On the arithmetic of the curves y 2 = x l + A and their Jacobians. J. Reine Angew. Math. 501, 171–189 (1998)
20. 20.
Stoll, M.: On the arithmetic of the curves y 2 = x l + A, II (1998), available from http://www.math.uiuc.edu/Algebraic-Number-Theory
21. 21.
Stoll, M.: Implementing 2-descent for jacobians of hyperelliptic curves (1999), available from http://www.math.uiuc.edu/Algebraic-Number-Theory
22. 22.
Stoll, M.: On the height constant for curves of genus two. Acta Arith. 90(2), 183–201 (1999)
23. 23.
Tijdeman, R.: Diophantine equations and Diophantine approximations. In: Number theory and applications (Banff, AB, 1988), pp. 215–243. Kluwer Acad. Publ., Dordrecht (1989)Google Scholar