A Fast Algorithm for Approximately Counting Smooth Numbers

  • Jonathan P. Sorenson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1838)

Abstract

Let Ψ(x,y) denote the number of integers ≤ x that are composed entirely of primes bounded by y. We present an algorithm for estimating the value of Ψ(x,y) with a running time roughly proportional to \(\sqrt{y}\). Our algorithm is a modification of an algorithm by Hunter and Sorenson that is based on a theorem of Hildebrand and Tenenbaum. This previous algorithm ran in time roughly proportional to y.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1970)Google Scholar
  2. 2.
    Bach, E., Shallit, J.: Algorithmic Number Theory, vol. 1. MIT Press, Cambridge (1996)MATHGoogle Scholar
  3. 3.
    Bernstein, D.J.: Enumerating and counting smooth integers. Chapter 2, PhD Thesis, University of California at Berkeley (May 1995)Google Scholar
  4. 4.
    Bernstein, D.J.: Bounding smooth integers. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 128–130. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning “Factorisatio Numerorum”. Journal of Number Theory 17, 1–28 (1983)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hildebrand, A.: On the number of positive integers ≤ x and free of prime factors > y. Journal of Number Theory 22, 289–30 (1986)Google Scholar
  7. 7.
    Hildebrand, A., Tenenbaum, G.: On integers free of large prime factors. Trans. AMS 296(1), 265–290 (1986)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hildebrand, A., Tenenbaum, G.: Integers without large prime factors. Journal de Théorie des Nombres de Bordeaux 5, 411–484 (1993)MATHMathSciNetGoogle Scholar
  9. 9.
    Hunter, S., Sorenson, J.P.: Approximating the number of integers free of large prime factors. Mathematics of Computation 66(220), 1729–1741 (1997)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  11. 11.
    Moree, P.: Psixyology and Diophantine Equations. PhD thesis, Rijksuniversiteit Leiden (1993)Google Scholar
  12. 12.
    Norton, K.K.: Numbers with Small Prime Factors, and the Least kth Power Non- Residue, Memoirs of the American Mathematical Society, vol. 106. American Mathematical Society, Providence, Rhode Island (1971)Google Scholar
  13. 13.
    Pomerance, C. (ed.): Cryptology and Computational Number Theory, Proceedings of Symposia in Applied Mathematics, vol. 42. American Mathematical Society, Providence, Rhode Island (1990)Google Scholar
  14. 14.
    Sorenson, J.P.: Trading time for space in prime number sieves. In: Buhler, J. (ed.) Proceedings of the Third International Algorithmic Number Theory Symposium, Portland, Oregon, pp. 179–195. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jonathan P. Sorenson
    • 1
  1. 1.Computer Science DepartmentButler UniversityIndianapolisUSA

Personalised recommendations