Advertisement

The Pseudoprimes up to 1013

  • Richard G. E. Pinch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1838)

Abstract

There are 38975 Fermat pseudoprimes (base 2) up to 1011, 101629 up to 1012 and 264239 up to 1013: we describe the calculations and give some statistics. The numbers were generated by a variety of strategies, the most important being a back-tracking search for possible prime factorisations, and the computations checked by a sieving technique.

Keywords

Prime Factor NATO Advance Study Institute Main Search Large Prime Factor Distinct Prime Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bressoud, D.M.: Factorization and primality testing. Springer, New York (1989)zbMATHGoogle Scholar
  2. 2.
    Brillhart, J., Lehmer, D.H., Selfridge, J.L., Tuckerman, B., Wagstaff Jr., S.S.: Factorizations of bn±1, Contemporary mathematics, 2nd edn., vol. 22. Amer. Math. Soc., Providence RI (1988)Google Scholar
  3. 3.
    Cipolla, M.: Sui numeri composti p, che verificano la congruenza di Fermat aP − 1 ≡ 1 mod p. Annali di Mathematica Pura e Applicata 9, 139–160 (1904)Google Scholar
  4. 4.
    Koblitz, N.: A course in number theory and cryptography,Graduate Texts in Mathematics, vol. 114. Springer, New York (1987)Google Scholar
  5. 5.
    Lehmer, D.H.: On Fermat’s quotient, base two. Math. Comp. 36, 289–290 (1981)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Mollin, R.A. (ed.): Number theory and its applications. Kluwer Academic Publishers, Dordrecht (1989); Proceedings of the NATO Advanced Study Institute on Number Theory and ApplicationsGoogle Scholar
  7. 7.
    Pinch, R.G.E.: The Carmichael numbers up to 1015. Math. Comp. 61, 381–391 (1993)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Pomerance, C.: On the distribution of pseudoprimes. Math. Comp. 37, 587–593 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Pomerance, C.: A new lower bound for the pseudoprime counting function, Illinois J. Maths 26, 4–9 (1982)Google Scholar
  10. 10.
    Pomerance, C.: Two methods in elementary analytic number theory. In: Mollin [6], Proceedings of the NATO Advanced Study Institute on Number Theory and ApplicationsGoogle Scholar
  11. 11.
    Pomerance, C., Selfridge, J.L., Wagstaff Jr., S.S.: The pseudoprimes up to 25.109. Math. Comp. 35(151), 1003–1026 (1980)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Ribenboim, P.: The little book of big primes. Springer, New York (1991)zbMATHGoogle Scholar
  13. 13.
    Ribenboim, P.: The new book of prime number records, 3rd edn. Springer, New York (1996)Google Scholar
  14. 14.
    Riesel, H.: Prime numbers and computer methods for factorization, 2nd edn. Progress in mathematics, vol. 126. Birkhauser, Boston (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Richard G. E. Pinch
    • 1
  1. 1. Cheltenham, GlosU.K.

Personalised recommendations